These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25184457)

  • 1. [A simulation model for HIV infection and its interaction with a cytotoxicimmune response].
    Londoño-González CA; Toro-Zapata HD; Trujillo-Salazar CA
    Rev Salud Publica (Bogota); 2014; 16(1):114-27. PubMed ID: 25184457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short- and Long-Term Optimal Control of a Mathematical Model for HIV Infection of CD4+T Cells.
    Croicu AM
    Bull Math Biol; 2015 Nov; 77(11):2035-71. PubMed ID: 26493544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the behavior of solutions in viral dynamical models.
    Tuckwell HC; Wan FY
    Biosystems; 2004 Mar; 73(3):157-61. PubMed ID: 15026192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitability in the host-pathogen interactions of HIV infection and emergence of viral load blips.
    Nkoa Onana DF; Mewoli B; Ouattara DA
    J Theor Biol; 2013 Jan; 317():407-17. PubMed ID: 23108210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HIV escape from natural killer cytotoxicity: nef inhibits NKp44L expression on CD4+ T cells.
    Fausther-Bovendo H; Sol-Foulon N; Candotti D; Agut H; Schwartz O; Debré P; Vieillard V
    AIDS; 2009 Jun; 23(9):1077-87. PubMed ID: 19424050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NK cytotoxicity against CD4+ T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand.
    Vieillard V; Strominger JL; Debré P
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):10981-6. PubMed ID: 16046540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of HIV infection: Simulating T4, T8, macrophages, antibody, and virus via specific anti-HIV response in the presence of adaptation and tropism.
    Wasserstein-Robbins F
    Bull Math Biol; 2010 Jul; 72(5):1208-53. PubMed ID: 20151219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular immune responses to HIV.
    McMichael AJ; Rowland-Jones SL
    Nature; 2001 Apr; 410(6831):980-7. PubMed ID: 11309628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical Analysis and Clinical Implications of an HIV Model with Adaptive Immunity.
    Danane J; Allali K
    Comput Math Methods Med; 2019; 2019():7673212. PubMed ID: 31827588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model and CD4+ lymphocyte dynamics in HIV infection.
    Hraba T; Dolezal J
    Emerg Infect Dis; 1996; 2(4):299-305. PubMed ID: 8969246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells.
    Wang L; Li MY
    Math Biosci; 2006 Mar; 200(1):44-57. PubMed ID: 16466751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stochastic model for early HIV-1 population dynamics.
    Tuckwell HC; Le Corfec E
    J Theor Biol; 1998 Dec; 195(4):451-63. PubMed ID: 9837702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus dynamics model with intracellular delays and immune response.
    Song H; Jiang W; Liu S
    Math Biosci Eng; 2015 Feb; 12(1):185-208. PubMed ID: 25811332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuzzy modeling and control of HIV infection.
    Zarei H; Kamyad AV; Heydari AA
    Comput Math Methods Med; 2012; 2012():893474. PubMed ID: 22536298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A delay-differential equation model of HIV related cancer-immune system dynamics.
    Foryś U; Poleszczuk J
    Math Biosci Eng; 2011 Apr; 8(2):627-41. PubMed ID: 21631150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Fas receptor in HIV infection: expression on peripheral blood lymphocytes and role in the depletion of T cells.
    Gehri R; Hahn S; Rothen M; Steuerwald M; Nuesch R; Erb P
    AIDS; 1996 Jan; 10(1):9-16. PubMed ID: 8924258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: how often should you vaccinate and how strong should the vaccine be?
    Smith RJ; Schwartz EJ
    Math Biosci; 2008 Apr; 212(2):180-7. PubMed ID: 18359048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD8 lymphocytes in HIV infection: helpful and harmful.
    Famularo G; Moretti S; Marcellini S; Nucera E; De Simone C
    J Clin Lab Immunol; 1997; 49(1):15-32. PubMed ID: 9819670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No differences in cellular immune responses between asymptomatic HIV type 1- and type 2-infected Gambian patients.
    Jaye A; Sarge-Njie R; Schim van der Loeff M; Todd J; Alabi A; Sabally S; Corrah T; Whittle H
    J Infect Dis; 2004 Feb; 189(3):498-505. PubMed ID: 14745708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV replication elicits little cytopathic effects in vivo: analysis of surrogate markers for virus production, cytotoxic T cell response and infected cell death.
    Funk GA; Oxenius A; Fischer M; Opravil M; Joos B; Flepp M; Weber R; Günthard HF; Bonhoeffer S
    J Med Virol; 2006 Sep; 78(9):1141-6. PubMed ID: 16847964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.