These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 25184457)

  • 21. Stability of an adaptive immunity viral infection model with multi-stages of infected cells and two routes of infection.
    AlShamrani NH; Elaiw AM
    Math Biosci Eng; 2019 Oct; 17(1):575-605. PubMed ID: 31731366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling the influence of activation-induced apoptosis of CD4+ and CD8+ T-cells on the immune system response of a HIV-infected patient.
    Stan GB; Belmudes F; Fonteneau R; Zeggwagh F; Lefebvre MA; Michelet C; Ernst D
    IET Syst Biol; 2008 Mar; 2(2):94-102. PubMed ID: 18397120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Longitudinal study of HIV-specific cytotoxic lymphocytes in HIV type 1-infected patients: relative balance between host immune response and the spread of HIV type 1 infection.
    Bariou C; Genetet N; Ruffault A; Michelet C; Cartier F; Genetet B
    AIDS Res Hum Retroviruses; 1997 Oct; 13(15):1301-12. PubMed ID: 9339847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of HIV persistence: implications for vaccines and therapy.
    Bremermann HJ
    J Acquir Immune Defic Syndr Hum Retrovirol; 1995 Aug; 9(5):459-83. PubMed ID: 7627623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A modeling approach to the impact of HIV mutations on the immune system.
    Vergu E; Mallet A; Golmard JL
    Comput Biol Med; 2005 Jan; 35(1):1-24. PubMed ID: 15567349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NKG2C is a major triggering receptor involved in the V[delta]1 T cell-mediated cytotoxicity against HIV-infected CD4 T cells.
    Fausther-Bovendo H; Wauquier N; Cherfils-Vicini J; Cremer I; Debré P; Vieillard V
    AIDS; 2008 Jan; 22(2):217-26. PubMed ID: 18097224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Down-modulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection.
    Scheppler JA; Nicholson JK; Swan DC; Ahmed-Ansari A; McDougal JS
    J Immunol; 1989 Nov; 143(9):2858-66. PubMed ID: 2572645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Failure to reconstitute CD4+ T-cells despite suppression of HIV replication under HAART.
    Aiuti F; Mezzaroma I
    AIDS Rev; 2006; 8(2):88-97. PubMed ID: 16848276
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HIV-infected humans, but not chimpanzees, have circulating cytotoxic T lymphocytes that lyse uninfected CD4+ cells.
    Zarling JM; Ledbetter JA; Sias J; Fultz P; Eichberg J; Gjerset G; Moran PA
    J Immunol; 1990 Apr; 144(8):2992-8. PubMed ID: 1969880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the intra-host dynamics of HIV-1 infections.
    Stilianakis NI; Schenzle D
    Math Biosci; 2006 Jan; 199(1):1-25. PubMed ID: 16343556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability and Hopf Bifurcation in a Delayed HIV Infection Model with General Incidence Rate and Immune Impairment.
    Li F; Ma W; Jiang Z; Li D
    Comput Math Methods Med; 2015; 2015():206205. PubMed ID: 26413141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential susceptibility of leukocyte subsets to cytotoxic T cell killing: implications for HIV immunopathogenesis.
    Liu J; Roederer M
    Cytometry A; 2007 Feb; 71(2):94-104. PubMed ID: 17200952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytotoxic granule release dominates gag-specific CD4+ T-cell response in different phases of HIV infection.
    Nemes E; Bertoncelli L; Lugli E; Pinti M; Nasi M; Manzini L; Manzini S; Prati F; Borghi V; Cossarizza A; Mussini C
    AIDS; 2010 Apr; 24(7):947-57. PubMed ID: 20179574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple model to simulate cellular changes in the T cell system following HIV-1 infection.
    Wang G; Krueger GR; Buja LM
    Anticancer Res; 2004; 24(3a):1689-98. PubMed ID: 15274342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Target cell limited and immune control models of HIV infection: a comparison.
    De Boer RJ; Perelson AS
    J Theor Biol; 1998 Feb; 190(3):201-14. PubMed ID: 9514649
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulating the entire natural course of HIV infection by extending the basic viral dynamics equations to include declining viral clearance.
    Petravic J; Wilson DP
    Pathog Dis; 2019 Jun; 77(4):. PubMed ID: 31397848
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimisation and parallelisation strategies for Monte Carlo simulation of HIV infection.
    Hecquet D; Ruskin HJ; Crane M
    Comput Biol Med; 2007 May; 37(5):691-9. PubMed ID: 16901479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An exponential Galerkin method for solutions of HIV infection model of CD4
    Yüzbaşı Ş; Karaçayır M
    Comput Biol Chem; 2017 Apr; 67():205-212. PubMed ID: 28135686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dual role of CD4 T helper cells in the infection dynamics of HIV and their importance for vaccination.
    Altes HK; Wodarz D; Jansen VA
    J Theor Biol; 2002 Feb; 214(4):633-46. PubMed ID: 11851372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defining CTL-induced pathology: implications for HIV.
    Wodarz D; Krakauer DC
    Virology; 2000 Aug; 274(1):94-104. PubMed ID: 10936092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.