These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25185811)

  • 1. Relationship between individual neuron and network spontaneous activity in developing mouse cortex.
    Barnett HM; Gjorgjieva J; Weir K; Comfort C; Fairhall AL; Moody WJ
    J Neurophysiol; 2014 Dec; 112(12):3033-45. PubMed ID: 25185811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early network activity propagates bidirectionally between hippocampus and cortex.
    Barger Z; Easton CR; Neuzil KE; Moody WJ
    Dev Neurobiol; 2016 Jun; 76(6):661-72. PubMed ID: 26385616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones.
    McCabe AK; Chisholm SL; Picken-Bahrey HL; Moody WJ
    J Physiol; 2006 Nov; 577(Pt 1):155-67. PubMed ID: 16945966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic elimination of GABAergic neurotransmission reveals two distinct pacemakers for spontaneous waves of activity in the developing mouse cortex.
    Easton CR; Weir K; Scott A; Moen SP; Barger Z; Folch A; Hevner RF; Moody WJ
    J Neurosci; 2014 Mar; 34(11):3854-63. PubMed ID: 24623764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex.
    Conhaim J; Easton CR; Becker MI; Barahimi M; Cedarbaum ER; Moore JG; Mather LF; Dabagh S; Minter DJ; Moen SP; Moody WJ
    J Physiol; 2011 May; 589(Pt 10):2529-41. PubMed ID: 21486817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium and potassium conductances in principal neurons of the mouse piriform cortex: a quantitative description.
    Ikeda K; Suzuki N; Bekkers JM
    J Physiol; 2018 Nov; 596(22):5397-5414. PubMed ID: 30194865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of spontaneous activity in random networks with multiple neuron subtypes and synaptic noise : Spontaneous activity in networks with synaptic noise.
    Pena RFO; Zaks MA; Roque AC
    J Comput Neurosci; 2018 Aug; 45(1):1-28. PubMed ID: 29923159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex.
    Conhaim J; Cedarbaum ER; Barahimi M; Moore JG; Becker MI; Gleiss H; Kohl C; Moody WJ
    Dev Neurobiol; 2010 Sep; 70(10):679-92. PubMed ID: 20506182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilaterally propagating waves of spontaneous activity arising from discrete pacemakers in the neonatal mouse cerebral cortex.
    Lischalk JW; Easton CR; Moody WJ
    Dev Neurobiol; 2009 Jun; 69(7):407-14. PubMed ID: 19263415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization properties of spindle oscillations in a thalamic reticular nucleus model.
    Golomb D; Wang XJ; Rinzel J
    J Neurophysiol; 1994 Sep; 72(3):1109-26. PubMed ID: 7807198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model.
    Kumar A; Rotter S; Aertsen A
    J Neurosci; 2008 May; 28(20):5268-80. PubMed ID: 18480283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network bursting dynamics in excitatory cortical neuron cultures results from the combination of different adaptive mechanisms.
    Masquelier T; Deco G
    PLoS One; 2013; 8(10):e75824. PubMed ID: 24146781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous and asynchronous bursting states: role of intrinsic neural dynamics.
    Takekawa T; Aoyagi T; Fukai T
    J Comput Neurosci; 2007 Oct; 23(2):189-200. PubMed ID: 17387606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks.
    Muramoto K; Ichikawa M; Kawahara M; Kobayashi K; Kuroda Y
    Neurosci Lett; 1993 Dec; 163(2):163-5. PubMed ID: 8309624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leading role of the piriform cortex over the neocortex in the generation of spontaneous interictal spikes during block of GABA(A) receptors.
    Rigas P; Castro-Alamancos MA
    Neuroscience; 2004; 124(4):953-61. PubMed ID: 15026135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronized paroxysmal activity in the developing thalamocortical network mediated by corticothalamic projections and "silent" synapses.
    Golshani P; Jones EG
    J Neurosci; 1999 Apr; 19(8):2865-75. PubMed ID: 10191304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.
    Voigt T; Opitz T; de Lima AD
    J Neurosci; 2001 Nov; 21(22):8895-905. PubMed ID: 11698601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharp wave-associated activity patterns of cortical neurons in the mouse piriform cortex.
    Katori K; Manabe H; Nakashima A; Dunfu E; Sasaki T; Ikegaya Y; Takeuchi H
    Eur J Neurosci; 2018 Nov; 48(10):3246-3254. PubMed ID: 30075483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous synchronous network activity in the neonatal development of mPFC in mice.
    Pires J; Nelissen R; Mansvelder HD; Meredith RM
    Dev Neurobiol; 2021 Mar; 81(2):207-225. PubMed ID: 33453138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex.
    Russo MJ; Franks KM; Oghaz R; Axel R; Siegelbaum SA
    J Neurosci; 2020 Dec; 40(49):9414-9425. PubMed ID: 33115926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.