These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25185827)
1. Tracing the evolution of the p53 tetramerization domain. Joerger AC; Wilcken R; Andreeva A Structure; 2014 Sep; 22(9):1301-1310. PubMed ID: 25185827 [TBL] [Abstract][Full Text] [Related]
2. Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Joerger AC; Rajagopalan S; Natan E; Veprintsev DB; Robinson CV; Fersht AR Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17705-10. PubMed ID: 19815500 [TBL] [Abstract][Full Text] [Related]
3. Evolution of the p53-MDM2 pathway. Åberg E; Saccoccia F; Grabherr M; Ore WYJ; Jemth P; Hultqvist G BMC Evol Biol; 2017 Aug; 17(1):177. PubMed ID: 28774266 [TBL] [Abstract][Full Text] [Related]
4. Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Nedelcu AM; Tan C Dev Genes Evol; 2007 Dec; 217(11-12):801-6. PubMed ID: 17924139 [TBL] [Abstract][Full Text] [Related]
5. Conformational stability and activity of p73 require a second helix in the tetramerization domain. Coutandin D; Löhr F; Niesen FH; Ikeya T; Weber TA; Schäfer B; Zielonka EM; Bullock AN; Yang A; Güntert P; Knapp S; McKeon F; Ou HD; Dötsch V Cell Death Differ; 2009 Dec; 16(12):1582-9. PubMed ID: 19763140 [TBL] [Abstract][Full Text] [Related]
6. Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Heering J; Jonker HR; Löhr F; Schwalbe H; Dötsch V Protein Sci; 2016 Feb; 25(2):410-22. PubMed ID: 26473758 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the Activity in the p53 Family Depends on the Organization of the Transactivation Domain. Krauskopf K; Gebel J; Kazemi S; Tuppi M; Löhr F; Schäfer B; Koch J; Güntert P; Dötsch V; Kehrloesser S Structure; 2018 Aug; 26(8):1091-1100.e4. PubMed ID: 30099987 [TBL] [Abstract][Full Text] [Related]
8. Identification of DeltaN isoform and polyadenylation site choice variants in molluscan p63/p73-like homologues. Muttray AF; Cox RL; Reinisch CL; Baldwin SA Mar Biotechnol (NY); 2007; 9(2):217-30. PubMed ID: 17242983 [TBL] [Abstract][Full Text] [Related]
9. Structural evolution of C-terminal domains in the p53 family. Ou HD; Löhr F; Vogel V; Mäntele W; Dötsch V EMBO J; 2007 Jul; 26(14):3463-73. PubMed ID: 17581633 [TBL] [Abstract][Full Text] [Related]
10. Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73. van Dieck J; Brandt T; Teufel DP; Veprintsev DB; Joerger AC; Fersht AR Oncogene; 2010 Apr; 29(14):2024-35. PubMed ID: 20140014 [TBL] [Abstract][Full Text] [Related]
11. Structure and kinetic stability of the p63 tetramerization domain. Natan E; Joerger AC J Mol Biol; 2012 Jan; 415(3):503-13. PubMed ID: 22100306 [TBL] [Abstract][Full Text] [Related]
12. Characterization of p53 Family Homologs in Evolutionary Remote Branches of Holozoa. Bartas M; Brázda V; Červeň J; Pečinka P Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861340 [TBL] [Abstract][Full Text] [Related]
13. Dimerization of the core domain of the p53 family: a computational study. Madhumalar A; Jun LH; Lane DP; Verma CS Cell Cycle; 2009 Jan; 8(1):137-48. PubMed ID: 19106606 [TBL] [Abstract][Full Text] [Related]
14. Expression of homologues for p53 and p73 in the softshell clam (Mya arenaria), a naturally-occurring model for human cancer. Kelley ML; Winge P; Heaney JD; Stephens RE; Farell JH; Van Beneden RJ; Reinisch CL; Lesser MP; Walker CW Oncogene; 2001 Feb; 20(6):748-58. PubMed ID: 11314008 [TBL] [Abstract][Full Text] [Related]
15. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. Kamada R; Nomura T; Anderson CW; Sakaguchi K J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130 [TBL] [Abstract][Full Text] [Related]
16. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Gaiddon C; Lokshin M; Ahn J; Zhang T; Prives C Mol Cell Biol; 2001 Mar; 21(5):1874-87. PubMed ID: 11238924 [TBL] [Abstract][Full Text] [Related]
17. p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. Davison TS; Vagner C; Kaghad M; Ayed A; Caput D; Arrowsmith CH J Biol Chem; 1999 Jun; 274(26):18709-14. PubMed ID: 10373484 [TBL] [Abstract][Full Text] [Related]
18. Crystal structures of the DNA-binding domain tetramer of the p53 tumor suppressor family member p73 bound to different full-site response elements. Ethayathulla AS; Nguyen HT; Viadiu H J Biol Chem; 2013 Feb; 288(7):4744-54. PubMed ID: 23243311 [TBL] [Abstract][Full Text] [Related]
19. The p73 DNA binding domain displays enhanced stability relative to its homologue, the tumor suppressor p53, and exhibits cooperative DNA binding. Patel S; Bui TT; Drake AF; Fraternali F; Nikolova PV Biochemistry; 2008 Mar; 47(10):3235-44. PubMed ID: 18260640 [TBL] [Abstract][Full Text] [Related]
20. Tracing the protectors path from the germ line to the genome. Coutandin D; Ou HD; Löhr F; Dötsch V Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15318-25. PubMed ID: 20696896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]