These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25185834)

  • 1. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.
    Bhogra M; Ramamurty U; Waghmare UV
    J Phys Condens Matter; 2014 Sep; 26(38):385402. PubMed ID: 25185834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation.
    Shang SL; Wang WY; Wang Y; Du Y; Zhang JX; Patel AD; Liu ZK
    J Phys Condens Matter; 2012 Apr; 24(15):155402. PubMed ID: 22436671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant contribution of stacking faults to the strain hardening behavior of Cu-15%Al alloy with different grain sizes.
    Tian YZ; Zhao LJ; Chen S; Shibata A; Zhang ZF; Tsuji N
    Sci Rep; 2015 Nov; 5():16707. PubMed ID: 26582568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.
    Li R; Lu S; Kim D; Schönecker S; Zhao J; Kwon SK; Vitos L
    J Phys Condens Matter; 2016 Oct; 28(39):395001. PubMed ID: 27484794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles.
    Ikeda Y; Körmann F; Tanaka I; Neugebauer J
    Entropy (Basel); 2018 Aug; 20(9):. PubMed ID: 33265744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation induced microtwins and stacking faults in aluminum single crystal.
    Han WZ; Cheng GM; Li SX; Wu SD; Zhang ZF
    Phys Rev Lett; 2008 Sep; 101(11):115505. PubMed ID: 18851297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.
    Shang SL; Zacherl CL; Fang HZ; Wang Y; Du Y; Liu ZK
    J Phys Condens Matter; 2012 Dec; 24(50):505403. PubMed ID: 23172684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal spin fluctuations in CoCrFeMnNi high entropy alloy.
    Dong Z; Schönecker S; Li W; Chen D; Vitos L
    Sci Rep; 2018 Aug; 8(1):12211. PubMed ID: 30111892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
    Shapiro JN; Lin A; Ratsch C; Huffaker DL
    Nanotechnology; 2013 Nov; 24(47):475601. PubMed ID: 24192402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.
    Pang WW; Zhang P; Zhang GC; Xu AG; Zhao XG
    Sci Rep; 2014 Nov; 4():6981. PubMed ID: 25382029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy.
    Sun X; Zhang H; Li W; Ding X; Wang Y; Vitos L
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31887990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacking fault energies and slip in nanocrystalline metals.
    Van Swygenhoven H; Derlet PM; Frøseth AG
    Nat Mater; 2004 Jun; 3(6):399-403. PubMed ID: 15156199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.
    Wang C; Wang H; Huang T; Xue X; Qiu F; Jiang Q
    Sci Rep; 2015 May; 5():10213. PubMed ID: 25998415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting of defective Cu with stacking faults.
    Han LB; An Q; Fu RS; Zheng L; Luo SN
    J Chem Phys; 2009 Jan; 130(2):024508. PubMed ID: 19154039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel potential: the interlayer potential for the fcc (111) plane family.
    Tian FY; Chen NX; Shen J; Vitos L
    J Phys Condens Matter; 2012 Feb; 24(4):045001. PubMed ID: 22185935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on heterogeneous nucleation and mechanical properties of the fcc-Al/L1
    Liu Y; Wen JC; Zhang XY; Huang YC
    Phys Chem Chem Phys; 2021 Mar; 23(8):4718-4727. PubMed ID: 33596276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized stacking fault energies of alloys.
    Li W; Lu S; Hu QM; Kwon SK; Johansson B; Vitos L
    J Phys Condens Matter; 2014 Jul; 26(26):265005. PubMed ID: 24903220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co: a first-principles study.
    Aas CJ; Szunyogh L; Evans RF; Chantrell RW
    J Phys Condens Matter; 2013 Jul; 25(29):296006. PubMed ID: 23817945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles calculations for understanding microstructures and mechanical properties of co-sputtered Al alloys.
    Gong M; Wu W; Xie D; Richter NA; Li Q; Zhang Y; Xue S; Zhang X; Wang J
    Nanoscale; 2021 Sep; 13(35):14987-15001. PubMed ID: 34533161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-scale dynamic process of deformation-induced stacking fault tetrahedra in gold nanocrystals.
    Wang JW; Narayanan S; Huang JY; Zhang Z; Zhu T; Mao SX
    Nat Commun; 2013; 4():2340. PubMed ID: 23945977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.