These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 25186029)
1. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Huang X; Jiang P Adv Mater; 2015 Jan; 27(3):546-54. PubMed ID: 25186029 [TBL] [Abstract][Full Text] [Related]
2. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. Zhu M; Huang X; Yang K; Zhai X; Zhang J; He J; Jiang P ACS Appl Mater Interfaces; 2014 Nov; 6(22):19644-54. PubMed ID: 25365240 [TBL] [Abstract][Full Text] [Related]
3. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability. Yang K; Huang X; Zhu M; Xie L; Tanaka T; Jiang P ACS Appl Mater Interfaces; 2014 Feb; 6(3):1812-22. PubMed ID: 24397561 [TBL] [Abstract][Full Text] [Related]
4. 1D/2D Carbon Nanomaterial-Polymer Dielectric Composites with High Permittivity for Power Energy Storage Applications. Dang ZM; Zheng MS; Zha JW Small; 2016 Apr; 12(13):1688-701. PubMed ID: 26865507 [TBL] [Abstract][Full Text] [Related]
5. Decorating TiO Kang D; Wang G; Huang Y; Jiang P; Huang X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4077-4085. PubMed ID: 29300082 [TBL] [Abstract][Full Text] [Related]
6. Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Xie L; Huang X; Li BW; Zhi C; Tanaka T; Jiang P Phys Chem Chem Phys; 2013 Oct; 15(40):17560-9. PubMed ID: 24037057 [TBL] [Abstract][Full Text] [Related]
7. Enhancing electrical energy storage capability of dielectric polymer nanocomposites via the room temperature Coulomb blockade effect of ultra-small platinum nanoparticles. Wang L; Huang X; Zhu Y; Jiang P Phys Chem Chem Phys; 2018 Feb; 20(7):5001-5011. PubMed ID: 29388645 [TBL] [Abstract][Full Text] [Related]
8. Optimizing the dielectric constant of the shell layer in core-shell structures for enhanced energy density of polymer nanocomposites. Zhang QP; Du FY; Liu X; Lv JH; He L; Li JL; Li YT; Zhou YL Phys Chem Chem Phys; 2023 Jul; 25(27):18030-18037. PubMed ID: 37378512 [TBL] [Abstract][Full Text] [Related]
9. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO Wang G; Huang Y; Wang Y; Jiang P; Huang X Phys Chem Chem Phys; 2017 Aug; 19(31):21058-21068. PubMed ID: 28748238 [TBL] [Abstract][Full Text] [Related]
10. Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material. Huang Y; Huang X; Schadler LS; He J; Jiang P ACS Appl Mater Interfaces; 2016 Sep; 8(38):25496-507. PubMed ID: 27602603 [TBL] [Abstract][Full Text] [Related]
11. Tailoring Dielectric Properties and Energy Density of Ferroelectric Polymer Nanocomposites by High-k Nanowires. Wang G; Huang X; Jiang P ACS Appl Mater Interfaces; 2015 Aug; 7(32):18017-27. PubMed ID: 26225887 [TBL] [Abstract][Full Text] [Related]
12. Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO Prateek ; Bhunia R; Siddiqui S; Garg A; Gupta RK ACS Appl Mater Interfaces; 2019 Apr; 11(15):14329-14339. PubMed ID: 30892860 [TBL] [Abstract][Full Text] [Related]
13. Enhanced breakdown strength and suppressed dielectric loss of polymer nanocomposites with BaTiO Zhang J; Ma J; Zhang L; Zong C; Xu A; Zhang Y; Geng B; Zhang S RSC Adv; 2020 Feb; 10(12):7065-7072. PubMed ID: 35493868 [TBL] [Abstract][Full Text] [Related]
14. Multiple Interfacial Fe Zhou L; Fu Q; Xue F; Tang X; Zhou D; Tian Y; Wang G; Wang C; Gou H; Xu L ACS Appl Mater Interfaces; 2017 Nov; 9(46):40792-40800. PubMed ID: 29090897 [TBL] [Abstract][Full Text] [Related]
15. Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene). Rahimabady M; Mirshekarloo MS; Yao K; Lu L Phys Chem Chem Phys; 2013 Oct; 15(38):16242-8. PubMed ID: 23999532 [TBL] [Abstract][Full Text] [Related]
16. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Prateek ; Thakur VK; Gupta RK Chem Rev; 2016 Apr; 116(7):4260-317. PubMed ID: 27040315 [TBL] [Abstract][Full Text] [Related]
17. Achieving Excellent Dielectric and Energy Storage Performance in Core-Double-Shell-Structured Polyetherimide Nanocomposites. Yuan Y; Lin J; Wang X; Qian J; Zuo P; Zhuang Q Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514477 [TBL] [Abstract][Full Text] [Related]
18. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Yang K; Huang X; Xie L; Wu C; Jiang P; Tanaka T Macromol Rapid Commun; 2012 Nov; 33(22):1921-6. PubMed ID: 22887717 [TBL] [Abstract][Full Text] [Related]
19. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures. Li Q; Liu F; Yang T; Gadinski MR; Zhang G; Chen LQ; Wang Q Proc Natl Acad Sci U S A; 2016 Sep; 113(36):9995-10000. PubMed ID: 27551101 [TBL] [Abstract][Full Text] [Related]
20. Design and characterization of molecular, crystal and interfacial structures of PVDF-based dielectric nanocomposites for electric energy storage. Zhu N; Zhou J; Zhang L; Yao N; Dastan D; Zhang J; Chen Y; Zhang X Soft Matter; 2023 Jun; 19(24):4401-4431. PubMed ID: 37309746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]