These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 25186345)

  • 1. Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders.
    Dayanidhi S; Lieber RL
    Muscle Nerve; 2014 Nov; 50(5):723-32. PubMed ID: 25186345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment.
    Dhawan J; Rando TA
    Trends Cell Biol; 2005 Dec; 15(12):666-73. PubMed ID: 16243526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology.
    Cornelison D
    Curr Top Dev Biol; 2018; 126():205-233. PubMed ID: 29304999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle stem cells in developmental and regenerative myogenesis.
    Kang JS; Krauss RS
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular Biomechanics in Skeletal Muscle Regeneration.
    Li EW; McKee-Muir OC; Gilbert PM
    Curr Top Dev Biol; 2018; 126():125-176. PubMed ID: 29304997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced skeletal muscle satellite cell number alters muscle morphology after chronic stretch but allows limited serial sarcomere addition.
    Kinney MC; Dayanidhi S; Dykstra PB; McCarthy JJ; Peterson CA; Lieber RL
    Muscle Nerve; 2017 Mar; 55(3):384-392. PubMed ID: 27343167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of myogenic potential and fusion capacity of muscle stem cells isolated from contractured muscle in children with cerebral palsy.
    Domenighetti AA; Mathewson MA; Pichika R; Sibley LA; Zhao L; Chambers HG; Lieber RL
    Am J Physiol Cell Physiol; 2018 Aug; 315(2):C247-C257. PubMed ID: 29694232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic and extrinsic mechanisms regulating satellite cell function.
    Dumont NA; Wang YX; Rudnicki MA
    Development; 2015 May; 142(9):1572-81. PubMed ID: 25922523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging changes in satellite cells and their functions.
    Hikida RS
    Curr Aging Sci; 2011 Dec; 4(3):279-97. PubMed ID: 21529324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of muscle fibre growth during postnatal mouse development.
    White RB; Biérinx AS; Gnocchi VF; Zammit PS
    BMC Dev Biol; 2010 Feb; 10():21. PubMed ID: 20175910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into muscle stem cell dynamics during postnatal development.
    Bachman JF; Chakkalakal JV
    FEBS J; 2022 May; 289(10):2710-2722. PubMed ID: 33811430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?
    Judson RN; Zhang RH; Rossi FM
    FEBS J; 2013 Sep; 280(17):4100-8. PubMed ID: 23763717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sympathetic activity is correlated with satellite cell aging and myogenesis via β2-adrenoceptor.
    Yuan S; Zheng S; Zheng K; Gao Y; Chen M; Li Y; Bai X
    Stem Cell Res Ther; 2021 Sep; 12(1):505. PubMed ID: 34530910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy.
    Kahn RE; Krater T; Larson JE; Encarnacion M; Karakostas T; Patel NM; Swaroop VT; Dayanidhi S
    Am J Physiol Cell Physiol; 2023 Mar; 324(3):C614-C631. PubMed ID: 36622072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prepubertal skeletal muscle growth requires Pax7-expressing satellite cell-derived myonuclear contribution.
    Bachman JF; Klose A; Liu W; Paris ND; Blanc RS; Schmalz M; Knapp E; Chakkalakal JV
    Development; 2018 Oct; 145(20):. PubMed ID: 30305290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellite Cell Self-Renewal.
    Giordani L; Parisi A; Le Grand F
    Curr Top Dev Biol; 2018; 126():177-203. PubMed ID: 29304998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stage-specific effects of Notch activation during skeletal myogenesis.
    Bi P; Yue F; Sato Y; Wirbisky S; Liu W; Shan T; Wen Y; Zhou D; Freeman J; Kuang S
    Elife; 2016 Sep; 5():. PubMed ID: 27644105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration.
    Cornelison DD; Wilcox-Adelman SA; Goetinck PF; Rauvala H; Rapraeger AC; Olwin BB
    Genes Dev; 2004 Sep; 18(18):2231-6. PubMed ID: 15371336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional niche stiffness synergizes with Wnt7a to modulate the extent of satellite cell symmetric self-renewal divisions.
    Moyle LA; Cheng RY; Liu H; Davoudi S; Ferreira SA; Nissar AA; Sun Y; Gentleman E; Simmons CA; Gilbert PM
    Mol Biol Cell; 2020 Jul; 31(16):1703-1713. PubMed ID: 32491970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.