These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 25186393)
1. Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT. Guo W; Li Q Med Phys; 2014 Sep; 41(9):091906. PubMed ID: 25186393 [TBL] [Abstract][Full Text] [Related]
2. High performance lung nodule detection schemes in CT using local and global information. Guo W; Li Q Med Phys; 2012 Aug; 39(8):5157-68. PubMed ID: 22894441 [TBL] [Abstract][Full Text] [Related]
3. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Messay T; Hardie RC; Rogers SK Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728 [TBL] [Abstract][Full Text] [Related]
4. A computerized scheme for lung nodule detection in multiprojection chest radiography. Guo W; Li Q; Boyce SJ; McAdams HP; Shiraishi J; Doi K; Samei E Med Phys; 2012 Apr; 39(4):2001-12. PubMed ID: 22482621 [TBL] [Abstract][Full Text] [Related]
5. Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Li Q; Li F; Doi K Acad Radiol; 2008 Feb; 15(2):165-75. PubMed ID: 18206615 [TBL] [Abstract][Full Text] [Related]
6. A Segmentation Framework of Pulmonary Nodules in Lung CT Images. Mukhopadhyay S J Digit Imaging; 2016 Feb; 29(1):86-103. PubMed ID: 26055544 [TBL] [Abstract][Full Text] [Related]
7. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models. Cascio D; Magro R; Fauci F; Iacomi M; Raso G Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972 [TBL] [Abstract][Full Text] [Related]
8. Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels. Saien S; Hamid Pilevar A; Abrishami Moghaddam H Comput Biol Med; 2014 Nov; 54():188-98. PubMed ID: 25303113 [TBL] [Abstract][Full Text] [Related]
9. Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images. Chen B; Kitasaka T; Honma H; Takabatake H; Mori M; Natori H; Mori K Int J Comput Assist Radiol Surg; 2012 May; 7(3):465-82. PubMed ID: 21739111 [TBL] [Abstract][Full Text] [Related]
10. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Setio AAA; Traverso A; de Bel T; Berens MSN; Bogaard CVD; Cerello P; Chen H; Dou Q; Fantacci ME; Geurts B; Gugten RV; Heng PA; Jansen B; de Kaste MMJ; Kotov V; Lin JY; Manders JTMC; Sóñora-Mengana A; García-Naranjo JC; Papavasileiou E; Prokop M; Saletta M; Schaefer-Prokop CM; Scholten ET; Scholten L; Snoeren MM; Torres EL; Vandemeulebroucke J; Walasek N; Zuidhof GCA; Ginneken BV; Jacobs C Med Image Anal; 2017 Dec; 42():1-13. PubMed ID: 28732268 [TBL] [Abstract][Full Text] [Related]
11. Pulmonary nodule detection in CT images with quantized convergence index filter. Matsumoto S; Kundel HL; Gee JC; Gefter WB; Hatabu H Med Image Anal; 2006 Jun; 10(3):343-52. PubMed ID: 16542867 [TBL] [Abstract][Full Text] [Related]
12. A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD). Suzuki K Phys Med Biol; 2009 Sep; 54(18):S31-45. PubMed ID: 19687563 [TBL] [Abstract][Full Text] [Related]
13. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Schilham AM; van Ginneken B; Loog M Med Image Anal; 2006 Apr; 10(2):247-58. PubMed ID: 16293441 [TBL] [Abstract][Full Text] [Related]
14. A unified methodology based on sparse field level sets and boosting algorithms for false positives reduction in lung nodules detection. Saien S; Moghaddam HA; Fathian M Int J Comput Assist Radiol Surg; 2018 Mar; 13(3):397-409. PubMed ID: 28795318 [TBL] [Abstract][Full Text] [Related]
15. Fully automatic detection of lung nodules in CT images using a hybrid feature set. Shaukat F; Raja G; Gooya A; Frangi AF Med Phys; 2017 Jul; 44(7):3615-3629. PubMed ID: 28409834 [TBL] [Abstract][Full Text] [Related]
16. Shape-based computer-aided detection of lung nodules in thoracic CT images. Ye X; Lin X; Dehmeshki J; Slabaugh G; Beddoe G IEEE Trans Biomed Eng; 2009 Jul; 56(7):1810-20. PubMed ID: 19527950 [TBL] [Abstract][Full Text] [Related]
17. Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Naqi SM; Sharif M; Yasmin M Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1083-1095. PubMed ID: 29492880 [TBL] [Abstract][Full Text] [Related]
18. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Suzuki K; Armato SG; Li F; Sone S; Doi K Med Phys; 2003 Jul; 30(7):1602-17. PubMed ID: 12906178 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of an Algorithm for the Segmentation of Lung Nodules in Computerized Tomography Images based on the Automatic Location of a Threshold. Wang E; Li J; Liu L; Liu Y Curr Med Imaging; 2024; 20():e010823219341. PubMed ID: 37526452 [TBL] [Abstract][Full Text] [Related]
20. Computerized scheme for determination of the likelihood measure of malignancy for pulmonary nodules on low-dose CT images. Aoyama M; Li Q; Katsuragawa S; Li F; Sone S; Doi K Med Phys; 2003 Mar; 30(3):387-94. PubMed ID: 12674239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]