BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 25186413)

  • 21. Development of a pixelated GSO gamma camera system with tungsten parallel hole collimator for single photon imaging.
    Yamamoto S; Watabe H; Kanai Y; Shimosegawa E; Hatazawa J
    Med Phys; 2012 Feb; 39(2):581-8. PubMed ID: 22320767
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging.
    Tai YC; Ruangma A; Rowland D; Siegel S; Newport DF; Chow PL; Laforest R
    J Nucl Med; 2005 Mar; 46(3):455-63. PubMed ID: 15750159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of optical imaging with a small animal irradiator.
    Weersink RA; Ansell S; Wang A; Wilson G; Shah D; Lindsay PE; Jaffray DA
    Med Phys; 2014 Oct; 41(10):102701. PubMed ID: 25281980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Digital Preclinical PET/MRI Insert and Initial Results.
    Weissler B; Gebhardt P; Dueppenbecker PM; Wehner J; Schug D; Lerche CW; Goldschmidt B; Salomon A; Verel I; Heijman E; Perkuhn M; Heberling D; Botnar RM; Kiessling F; Schulz V
    IEEE Trans Med Imaging; 2015 Nov; 34(11):2258-70. PubMed ID: 25935031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance evaluation of a high resolution dedicated breast PET scanner.
    García Hernández T; Vicedo González A; Ferrer Rebolleda J; Sánchez Jurado R; Roselló Ferrando J; Brualla González L; Granero Cabañero D; Del Puig Cozar Santiago M
    Med Phys; 2016 May; 43(5):2261. PubMed ID: 27147338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring of positron using high-energy gamma camera for proton therapy.
    Yamamoto S; Toshito T; Komori M; Morishita Y; Okumura S; Yamaguchi M; Saito Y; Kawachi N; Fujimaki S
    Ann Nucl Med; 2015 Apr; 29(3):268-75. PubMed ID: 25476773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high-sensitivity and high-resolution PET camera evaluated with the NEMA NU 2-2001 standard.
    Matsumoto K; Kitamura K; Mizuta T; Tanaka K; Yamamoto S; Sakamoto S; Nakamoto Y; Amano M; Murase K; Senda M
    J Nucl Med; 2006 Jan; 47(1):83-90. PubMed ID: 16391191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First prototyping of a dedicated PET system with the hemisphere detector arrangement.
    Tashima H; Yoshida E; Iwao Y; Wakizaka H; Maeda T; Seki C; Kimura Y; Takado Y; Higuchi M; Suhara T; Yamashita T; Yamaya T
    Phys Med Biol; 2019 Mar; 64(6):065004. PubMed ID: 30673654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a Si-PM-based high-resolution PET system for small animals.
    Yamamoto S; Imaizumi M; Watabe T; Watabe H; Kanai Y; Shimosegawa E; Hatazawa J
    Phys Med Biol; 2010 Oct; 55(19):5817-31. PubMed ID: 20844330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging characteristics of a 3-dimensional GSO whole-body PET camera.
    Surti S; Karp JS
    J Nucl Med; 2004 Jun; 45(6):1040-9. PubMed ID: 15181139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study.
    Liu H; Carpenter CM; Jiang H; Pratx G; Sun C; Buchin MP; Gambhir SS; Xing L; Cheng Z
    J Nucl Med; 2012 Oct; 53(10):1579-84. PubMed ID: 22904353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First Cerenkov charge-induction (CCI) TlBr detector for TOF-PET and proton range verification.
    Ariño-Estrada G; Mitchell GS; Kim H; Du J; Kwon SI; Cirignano LJ; Shah KS; Cherry SR
    Phys Med Biol; 2019 Aug; 64(17):175001. PubMed ID: 31344688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A prototype MR insertable brain PET using tileable GAPD arrays.
    Hong KJ; Choi Y; Jung JH; Kang J; Hu W; Lim HK; Huh Y; Kim S; Jung JW; Kim KB; Song MS; Park HW
    Med Phys; 2013 Apr; 40(4):042503. PubMed ID: 23556919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo ¹⁸F-FDG tumour uptake measurements in small animals using Cerenkov radiation.
    Boschi F; Calderan L; D'Ambrosio D; Marengo M; Fenzi A; Calandrino R; Sbarbati A; Spinelli AE
    Eur J Nucl Med Mol Imaging; 2011 Jan; 38(1):120-7. PubMed ID: 20882278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerenkov-specific contrast agents for detection of pH in vivo.
    Czupryna J; Kachur AV; Blankemeyer E; Popov AV; Arroyo AD; Karp JS; Delikatny EJ
    J Nucl Med; 2015 Mar; 56(3):483-8. PubMed ID: 25655631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small animal PET scanner based on monolithic LYSO crystals: performance evaluation.
    Sanchez F; Moliner L; Correcher C; Gonzalez A; Orero A; Carles M; Soriano A; Rodriguez-Alvarez MJ; Medina LA; Mora F; Benlloch JM
    Med Phys; 2012 Feb; 39(2):643-53. PubMed ID: 22320773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of microfluidic PET tracer synthesis with Cerenkov imaging.
    Dooraghi AA; Keng PY; Chen S; Javed MR; Kim CJ; Chatziioannou AF; van Dam RM
    Analyst; 2013 Oct; 138(19):5654-64. PubMed ID: 23928799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A GSO tweezers-type coincidence detector for tumor detection.
    Yamamoto S; Higashi T; Senda M
    Radiol Phys Technol; 2013 Jul; 6(2):293-8. PubMed ID: 23283753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a GSO positron/single-photon imaging detector.
    Yamamoto S; Matsumoto K; Senda M
    Phys Med Biol; 2006 Jan; 51(2):457-69. PubMed ID: 16394350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harderian gland adenectomy: a method to eliminate confounding radio-opacity in the assessment of rat brain metabolism by 18F-fluoro-2-deoxy-D-glucose positron emission tomography.
    Brammer DW; Riley JM; Kreuser SC; Zasadny KR; Callahan MJ; Davis MD
    J Am Assoc Lab Anim Sci; 2007 Sep; 46(5):42-5. PubMed ID: 17877327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.