BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25186428)

  • 1. Molecular effects of lapatinib in patients with HER2 positive ductal carcinoma in situ.
    Estévez LG; Suarez-Gauthier A; García E; Miró C; Calvo I; Fernández-Abad M; Herrero M; Marcos M; Márquez C; Lopez Ríos F; Perea S; Hidalgo M
    Breast Cancer Res; 2014 Sep; 16(4):R76. PubMed ID: 25186428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lapatinib inhibits stem/progenitor proliferation in preclinical in vitro models of ductal carcinoma in situ (DCIS).
    Farnie G; Johnson RL; Williams KE; Clarke RB; Bundred NJ
    Cell Cycle; 2014; 13(3):418-25. PubMed ID: 24247151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study.
    Borgquist S; Zhou W; Jirström K; Amini RM; Sollie T; Sørlie T; Blomqvist C; Butt S; Wärnberg F
    BMC Cancer; 2015 Jun; 15():468. PubMed ID: 26062614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy stimulates apoptosis in HER2-overexpressing breast cancers treated by lapatinib.
    Zhu X; Wu L; Qiao H; Han T; Chen S; Liu X; Jiang R; Wei Y; Feng D; Zhang Y; Ma Y; Zhang S; Zhang J
    J Cell Biochem; 2013 Dec; 114(12):2643-53. PubMed ID: 23794518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of BIM induction and survivin downregulation in lapatinib-induced apoptosis in breast cancer cells with HER2 amplification.
    Tanizaki J; Okamoto I; Fumita S; Okamoto W; Nishio K; Nakagawa K
    Oncogene; 2011 Sep; 30(39):4097-106. PubMed ID: 21499301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies.
    Toomey S; Eustace AJ; Fay J; Sheehan KM; Carr A; Milewska M; Madden SF; Teiserskiene A; Kay EW; O'Donovan N; Gallagher W; Grogan L; Breathnach O; Walshe J; Kelly C; Moulton B; Kennedy MJ; Gullo G; Hill AD; Power C; Duke D; Hambly N; Crown J; Hennessy BT
    Breast Cancer Res; 2017 Jul; 19(1):87. PubMed ID: 28750640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor expression and benefit from lapatinib in a randomized trial of paclitaxel with lapatinib or placebo as first-line treatment in HER2-negative or unknown metastatic breast cancer.
    Finn RS; Press MF; Dering J; Arbushites M; Koehler M; Oliva C; Williams LS; Di Leo A
    J Clin Oncol; 2009 Aug; 27(24):3908-15. PubMed ID: 19620495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence in situ hybridization gene amplification analysis of EGFR and HER2 in patients with malignant salivary gland tumors treated with lapatinib.
    Vidal L; Tsao MS; Pond GR; Cohen EE; Cohen RB; Chen EX; Agulnik M; Hotte S; Winquist E; Laurie S; Hayes DN; Ho J; Dancey J; Siu LL
    Head Neck; 2009 Aug; 31(8):1006-12. PubMed ID: 19309723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2-overexpressing locally advanced breast cancers.
    Dave B; Migliaccio I; Gutierrez MC; Wu MF; Chamness GC; Wong H; Narasanna A; Chakrabarty A; Hilsenbeck SG; Huang J; Rimawi M; Schiff R; Arteaga C; Osborne CK; Chang JC
    J Clin Oncol; 2011 Jan; 29(2):166-73. PubMed ID: 21135276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of HER2 amplification status among breast cancer subgroups offers new insights in pathways of breast cancer progression.
    Lambein K; Van Bockstal M; Vandemaele L; Van den Broecke R; Cocquyt V; Geenen S; Denys H; Libbrecht L
    Virchows Arch; 2017 Nov; 471(5):575-587. PubMed ID: 28567637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts.
    Groeneweg JW; Hernandez SF; Byron VF; DiGloria CM; Lopez H; Scialabba V; Kim M; Zhang L; Borger DR; Tambouret R; Foster R; Rueda BR; Growdon WB
    Clin Cancer Res; 2014 Dec; 20(24):6517-6528. PubMed ID: 25294905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histopathological characterization of ductal carcinoma in situ (DCIS) of the breast according to HER2 amplification status and molecular subtype.
    Van Bockstal M; Lambein K; Denys H; Braems G; Nuyts A; Van den Broecke R; Cocquyt V; De Wever O; Libbrecht L
    Virchows Arch; 2014 Sep; 465(3):275-89. PubMed ID: 24973889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An open-label study of lapatinib in women with HER-2-negative early breast cancer: the lapatinib pre-surgical study (LPS study).
    Coombes RC; Tat T; Miller ML; Reise JA; Mansi JL; Hadjiminas DJ; Shousha S; Elsheikh SE; Lam EW; Horimoto Y; El-Bahrawy M; Aboagye EO; Contractor KB; Shaw JA; Walker RA; Marconell MH; Palmieri C; Stebbing J
    Ann Oncol; 2013 Apr; 24(4):924-30. PubMed ID: 23233650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast.
    Latta EK; Tjan S; Parkes RK; O'Malley FP
    Mod Pathol; 2002 Dec; 15(12):1318-25. PubMed ID: 12481013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estrogen Receptor-positive Ductal Carcinoma In Situ Frequently Overexpresses HER2 Protein Without Gene Amplification.
    Horimoto Y; Terao T; Tsutsumi Y; Tanabe M; Mogushi K; Hlaing MT; Sasaki R; Saeki H; Okazaki M; Sonoue H; Arakawa A; Saito M
    Am J Surg Pathol; 2019 Sep; 43(9):1221-1228. PubMed ID: 31192864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tumor-Suppressor Protein OPCML Potentiates Anti-EGFR- and Anti-HER2-Targeted Therapy in HER2-Positive Ovarian and Breast Cancer.
    Zanini E; Louis LS; Antony J; Karali E; Okon IS; McKie AB; Vaughan S; El-Bahrawy M; Stebbing J; Recchi C; Gabra H
    Mol Cancer Ther; 2017 Oct; 16(10):2246-2256. PubMed ID: 28775148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry.
    Park K; Han S; Kim HJ; Kim J; Shin E
    Histopathology; 2006 May; 48(6):702-7. PubMed ID: 16681686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome and genome evolution during HER2-amplified breast neoplasia.
    Lu P; Foley J; Zhu C; McNamara K; Sirinukunwattana K; Vennam S; Varma S; Fehri H; Srivastava A; Zhu S; Rittscher J; Mallick P; Curtis C; West R
    Breast Cancer Res; 2021 Jul; 23(1):73. PubMed ID: 34266469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition.
    Brady SW; Zhang J; Tsai MH; Yu D
    Cancer Biol Ther; 2015; 16(3):402-11. PubMed ID: 25692408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene amplification in ductal carcinoma in situ of the breast.
    Burkhardt L; Grob TJ; Hermann I; Burandt E; Choschzick M; Jänicke F; Müller V; Bokemeyer C; Simon R; Sauter G; Wilczak W; Lebeau A
    Breast Cancer Res Treat; 2010 Oct; 123(3):757-65. PubMed ID: 20033484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.