BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25186618)

  • 1. The strength of assortative mating for flowering date and its basis in individual variation in flowering schedule.
    Weis AE; Nardone E; Fox GA
    J Evol Biol; 2014 Oct; 27(10):2138-51. PubMed ID: 25186618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and indirect assortative mating: a multivariate approach to plant flowering schedules.
    Weis AE
    J Evol Biol; 2005 May; 18(3):536-46. PubMed ID: 15842483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa.
    Weis AE; Kossler TM
    Am J Bot; 2004 Jun; 91(6):825-36. PubMed ID: 21653438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mating between Echinacea angustifolia (Asteraceae) individuals increases with their flowering synchrony and spatial proximity.
    Ison JL; Wagenius S; Reitz D; Ashley MV
    Am J Bot; 2014 Jan; 101(1):180-9. PubMed ID: 24388964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Among-individual variation in flowering phenology affects flowering synchrony and mating opportunity.
    Shelton WR; Mitchell RJ; Christopher DA; Jack LP; Karron JD
    Am J Bot; 2024 Jan; 111(1):e16269. PubMed ID: 38126922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density effects of flowering phenology and mating potential in Nicotiana alata.
    Lyons EE; Mully TW
    Oecologia; 1992 Aug; 91(1):93-100. PubMed ID: 28313379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assortative mating and differential male mating success in an ash hybrid zone population.
    Gérard PR; Klein EK; Austerlitz F; Fernández-Manjarrés JF; Frascaria-Lacoste N
    BMC Evol Biol; 2006 Nov; 6():96. PubMed ID: 17107611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time.
    Weis AE
    J Evol Biol; 2015 Mar; 28(3):699-714. PubMed ID: 25728931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey.
    Bock A; Sparks TH; Estrella N; Jee N; Casebow A; Schunk C; Leuchner M; Menzel A
    Glob Chang Biol; 2014 Nov; 20(11):3508-19. PubMed ID: 24639048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter and intraspecific variation on reproductive phenology of the Brazilian Atlantic forest Rubiaceae: ecology and phylogenetic constraints.
    SanMartin-Gajardo I; Morellato LP
    Rev Biol Trop; 2003; 51(3-4):691-8. PubMed ID: 15162775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured.
    Munguía-Rosas MA; Ollerton J; Parra-Tabla V; De-Nova JA
    Ecol Lett; 2011 May; 14(5):511-21. PubMed ID: 21332621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assortative mating in animals.
    Jiang Y; Bolnick DI; Kirkpatrick M
    Am Nat; 2013 Jun; 181(6):E125-38. PubMed ID: 23669548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assortative mating can help adaptation of flowering time to a changing climate: Insights from a polygenic model.
    Godineau C; Ronce O; Devaux C
    J Evol Biol; 2022 Apr; 35(4):491-508. PubMed ID: 33794053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term trends mask variation in the direction and magnitude of short-term phenological shifts.
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Am J Bot; 2013 Jul; 100(7):1398-406. PubMed ID: 23660568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assortative mating by flowering time and its effect on correlated traits in variable environments.
    Rubin MJ; Schmid KM; Friedman J
    Ecol Evol; 2019 Jan; 9(1):471-481. PubMed ID: 30680129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of phenological variation in sex expression on female reproductive success in Saxifraga granulata.
    van der Meer S; Jacquemyn H
    Am J Bot; 2015 Dec; 102(12):2116-23. PubMed ID: 26656126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mating Opportunity Increases with Synchrony of Flowering among Years More than Synchrony within Years in a Nonmasting Perennial.
    Waananen A; Kiefer G; Ison JL; Wagenius S
    Am Nat; 2018 Sep; 192(3):379-388. PubMed ID: 30125234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.