These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 2518731)

  • 1. Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters.
    Brandl H; Knee EJ; Fuller RC; Gross RA; Lenz RW
    Int J Biol Macromol; 1989 Feb; 11(1):49-55. PubMed ID: 2518731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Production of Poly(Hydroxybutyrate-
    Cabecas Segura P; Onderwater R; Deutschbauer A; Dewasme L; Wattiez R; Leroy B
    Appl Environ Microbiol; 2022 Mar; 88(6):e0158621. PubMed ID: 35080906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by
    Bayon-Vicente G; Zarbo S; Deutschbauer A; Wattiez R; Leroy B
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide.
    Godoy MS; de Miguel SR; Prieto MA
    Microb Cell Fact; 2023 Mar; 22(1):47. PubMed ID: 36899367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastics from bacteria and for bacteria: poly(beta-hydroxyalkanoates) as natural, biocompatible, and biodegradable polyesters.
    Brandl H; Gross RA; Lenz RW; Fuller RC
    Adv Biochem Eng Biotechnol; 1990; 41():77-93. PubMed ID: 2126418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas oleovorans as a Source of Poly(beta-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters.
    Brandl H; Gross RA; Lenz RW; Fuller RC
    Appl Environ Microbiol; 1988 Aug; 54(8):1977-82. PubMed ID: 16347708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodospirillum rubrum: utilization of condensed corn solubles for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production.
    Smith RL; West TP; Gibbons WR
    J Appl Microbiol; 2008 May; 104(5):1488-94. PubMed ID: 18179537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from unrelated carbon sources in engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Steinbüchel A
    FEMS Microbiol Lett; 2015 Apr; 362(8):fnv038. PubMed ID: 25761750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "intracellular" poly(3-hydroxybutyrate) (PHB) depolymerase of Rhodospirillum rubrum is a periplasm-located protein with specificity for native PHB and with structural similarity to extracellular PHB depolymerases.
    Handrick R; Reinhardt S; Kimmig P; Jendrossek D
    J Bacteriol; 2004 Nov; 186(21):7243-53. PubMed ID: 15489436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate.
    Do YS; Smeenk J; Broer KM; Kisting CJ; Brown R; Heindel TJ; Bobik TA; DiSpirito AA
    Biotechnol Bioeng; 2007 Jun; 97(2):279-86. PubMed ID: 17054121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of poly-D(-)-3-hydroxyalkanoates in the genus Bacillus.
    Chen GQ; König KH; Lafferty RM
    FEMS Microbiol Lett; 1991 Nov; 68(2):173-6. PubMed ID: 1778440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum.
    North JA; Sriram J; Chourey K; Ecker CD; Sharma R; Wildenthal JA; Hettich RL; Tabita FR
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum.
    Karmann S; Follonier S; Egger D; Hebel D; Panke S; Zinn M
    Microb Biotechnol; 2017 Nov; 10(6):1365-1375. PubMed ID: 28585362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis of short- and medium-chain-length poly(hydroxyalkanoate) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans.
    Ashby RD; Solaiman DK; Foglia TA
    J Ind Microbiol Biotechnol; 2002 Mar; 28(3):147-53. PubMed ID: 12074088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust at-line quantification of poly(3-hydroxyalkanoate) biosynthesis by flow cytometry using a BODIPY 493/503-SYTO 62 double-staining.
    Karmann S; Follonier S; Bassas-Galia M; Panke S; Zinn M
    J Microbiol Methods; 2016 Dec; 131():166-171. PubMed ID: 27720900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions.
    Narancic T; Scollica E; Kenny ST; Gibbons H; Carr E; Brennan L; Cagney G; Wynne K; Murphy C; Raberg M; Heinrich D; Steinbüchel A; O'Connor KE
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8901-12. PubMed ID: 27480532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomic studies in Rhodospirillum rubrum grown under different nitrogen conditions.
    Selao TT; Nordlund S; Norén A
    J Proteome Res; 2008 Aug; 7(8):3267-75. PubMed ID: 18570453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of poly(3-hydroxybutyric acid) synthase genes of Rhodobacter sphaeroides and Rhodospirillum rubrum and heterologous expression in Alcaligenes eutrophus.
    Hustede E; Steinbüchel A; Schlegel HG
    FEMS Microbiol Lett; 1992 Jun; 72(3):285-90. PubMed ID: 1499989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum: effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids.
    Rudolf C; Grammel H
    Enzyme Microb Technol; 2012 Apr; 50(4-5):238-46. PubMed ID: 22418264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.