BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 25187395)

  • 21. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction.
    Brandner CR; Kidgell DJ; Warmington SA
    Scand J Med Sci Sports; 2015 Dec; 25(6):770-7. PubMed ID: 25055880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute Cardiovascular, Metabolic, and Muscular Responses to Blood Flow Restricted Rowing Exercise.
    Mahoney SJ; Dicks ND; Lyman KJ; Christensen BK; Hackney KJ
    Aerosp Med Hum Perform; 2019 May; 90(5):440-446. PubMed ID: 31023403
    [No Abstract]   [Full Text] [Related]  

  • 23. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training.
    Abe T; Kearns CF; Sato Y
    J Appl Physiol (1985); 2006 May; 100(5):1460-6. PubMed ID: 16339340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The acute muscular effects of cycling with and without different degrees of blood flow restriction.
    Kim D; Loenneke JP; Thiebaud RS; Abe T; Bemben MG
    Acta Physiol Hung; 2015 Dec; 102(4):428-41. PubMed ID: 26690035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The acute muscular response to blood flow-restricted exercise with very low relative pressure.
    Jessee MB; Mattocks KT; Buckner SL; Mouser JG; Counts BR; Dankel SJ; Laurentino GC; Loenneke JP
    Clin Physiol Funct Imaging; 2018 Mar; 38(2):304-311. PubMed ID: 28251784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles.
    Evans C; Vance S; Brown M
    J Sports Sci; 2010 Jul; 28(9):999-1007. PubMed ID: 20544482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction.
    Wernbom M; Paulsen G; Nilsen TS; Hisdal J; Raastad T
    Eur J Appl Physiol; 2012 Jun; 112(6):2051-63. PubMed ID: 21947453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise and blood flow restriction.
    Pope ZK; Willardson JM; Schoenfeld BJ
    J Strength Cond Res; 2013 Oct; 27(10):2914-26. PubMed ID: 23364292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of cuff material on blood flow restriction stimulus in the upper body.
    Buckner SL; Dankel SJ; Counts BR; Jessee MB; Mouser JG; Mattocks KT; Laurentino GC; Abe T; Loenneke JP
    J Physiol Sci; 2017 Jan; 67(1):207-215. PubMed ID: 27194224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are higher blood flow restriction pressures more beneficial when lower loads are used?
    Dankel SJ; Jessee MB; Buckner SL; Mouser JG; Mattocks KT; Loenneke JP
    Physiol Int; 2017 Sep; 104(3):247-257. PubMed ID: 28956640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis.
    Lixandrão ME; Ugrinowitsch C; Berton R; Vechin FC; Conceição MS; Damas F; Libardi CA; Roschel H
    Sports Med; 2018 Feb; 48(2):361-378. PubMed ID: 29043659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of different types of lower body resistance training on arterial compliance and calf blood flow.
    Fahs CA; Rossow LM; Loenneke JP; Thiebaud RS; Kim D; Bemben DA; Bemben MG
    Clin Physiol Funct Imaging; 2012 Jan; 32(1):45-51. PubMed ID: 22152078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perceptual effects and efficacy of intermittent or continuous blood flow restriction resistance training.
    Fitschen PJ; Kistler BM; Jeong JH; Chung HR; Wu PT; Walsh MJ; Wilund KR
    Clin Physiol Funct Imaging; 2014 Sep; 34(5):356-63. PubMed ID: 24666729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-Intensity Exercise with Blood Flow Restriction Increases Muscle Strength without Altering hsCRP and Fibrinogen Levels in Healthy Subjects.
    Laswati H; Sugiarto D; Poerwandari D; Pangkahila JA; Kimura H
    Chin J Physiol; 2018 Jun; 61(3):188-195. PubMed ID: 29962179
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of Blood Flow Restriction Exercise on Muscle Fatigue Development and Recovery.
    Husmann F; Mittlmeier T; Bruhn S; Zschorlich V; Behrens M
    Med Sci Sports Exerc; 2018 Mar; 50(3):436-446. PubMed ID: 29112627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise.
    Yasuda T; Loenneke JP; Ogasawara R; Abe T
    Acta Physiol Hung; 2013 Dec; 100(4):419-26. PubMed ID: 24317348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Blood Flow Restricted Exercise Compared to High Load Resistance Exercise During Unloading.
    Hackney KJ; Downs ME; Ploutz-Snyder L
    Aerosp Med Hum Perform; 2016 Aug; 87(8):688-96. PubMed ID: 27634603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy.
    Farup J; de Paoli F; Bjerg K; Riis S; Ringgard S; Vissing K
    Scand J Med Sci Sports; 2015 Dec; 25(6):754-63. PubMed ID: 25603897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage.
    Nielsen JL; Aagaard P; Prokhorova TA; Nygaard T; Bech RD; Suetta C; Frandsen U
    J Physiol; 2017 Jul; 595(14):4857-4873. PubMed ID: 28481416
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The efficacy of blood flow restricted exercise: A systematic review & meta-analysis.
    Slysz J; Stultz J; Burr JF
    J Sci Med Sport; 2016 Aug; 19(8):669-75. PubMed ID: 26463594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.