These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25187698)

  • 1. Hysteresis modeling in ballistic carbon nanotube field-effect transistors.
    Liu Y; Moura MS; Costa AJ; de Almeida LA; Paranjape M; Fontana M
    Nanotechnol Sci Appl; 2014; 7():55-61. PubMed ID: 25187698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateral scaling in carbon-nanotube field-effect transistors.
    Wind SJ; Appenzeller J; Avouris P
    Phys Rev Lett; 2003 Aug; 91(5):058301. PubMed ID: 12906636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hysteresis-Free Carbon Nanotube Field-Effect Transistors.
    Park RS; Hills G; Sohn J; Mitra S; Shulaker MM; Wong HP
    ACS Nano; 2017 May; 11(5):4785-4791. PubMed ID: 28463503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple functionality in nanotube transistors.
    Léonard F; Tersoff J
    Phys Rev Lett; 2002 Jun; 88(25 Pt 1):258302. PubMed ID: 12097134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local inhomogeneity in gate hysteresis of carbon nanotube field-effect transistors investigated by scanning gate microscopy.
    Lee JS; Ryu S; Yoo K; Kim J; Choi IS; Yun WS
    Ultramicroscopy; 2008 Sep; 108(10):1045-9. PubMed ID: 18573615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO(2) gas detection.
    Mattmann M; Roman C; Helbling T; Bechstein D; Durrer L; Pohle R; Fleischer M; Hierold C
    Nanotechnology; 2010 May; 21(18):185501. PubMed ID: 20388980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors.
    Tunnell A; Ballarotto V; Cumings J
    Nanotechnology; 2014 Jan; 25(4):045705. PubMed ID: 24394672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution.
    Park RS; Shulaker MM; Hills G; Suriyasena Liyanage L; Lee S; Tang A; Mitra S; Wong HS
    ACS Nano; 2016 Apr; 10(4):4599-608. PubMed ID: 27002483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in carbon nanotube transistors: improving device-to-device consistency.
    Franklin AD; Tulevski GS; Han SJ; Shahrjerdi D; Cao Q; Chen HY; Wong HS; Haensch W
    ACS Nano; 2012 Feb; 6(2):1109-15. PubMed ID: 22272749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy of Electrostatic and Chemical Doping to Improve the Performance of Junctionless Carbon Nanotube Tunneling Field-Effect Transistors: Ultrascaling, Energy-Efficiency, and High Switching Performance.
    Tamersit K; Kouzou A; Bourouba H; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hysteresis-free operation of suspended carbon nanotube transistors.
    Muoth M; Helbling T; Durrer L; Lee SW; Roman C; Hierold C
    Nat Nanotechnol; 2010 Aug; 5(8):589-92. PubMed ID: 20601944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ballistic carbon nanotube field-effect transistors.
    Javey A; Guo J; Wang Q; Lundstrom M; Dai H
    Nature; 2003 Aug; 424(6949):654-7. PubMed ID: 12904787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-modulated carrier transport in carbon nanotube transistors.
    Appenzeller J; Knoch J; Derycke V; Martel R; Wind S; Avouris P
    Phys Rev Lett; 2002 Sep; 89(12):126801. PubMed ID: 12225112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC modeling and the source of flicker noise in passivated carbon nanotube transistors.
    Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M
    Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts.
    Li H; Zhang Q; Marzari N
    Nano Lett; 2008 Jan; 8(1):64-8. PubMed ID: 18069866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically Tunable Room Temperature Hysteresis Crossover in Underlap MoS
    Jawa H; Varghese A; Lodha S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9186-9194. PubMed ID: 33555851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decrease of the OFF state current of carbon nanotube field effect transistors via continuous repeated gate sweeping.
    Feng Y; Huang S; Kang K; Qi Y; Feng Y; You F
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10544-7. PubMed ID: 22408944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of carbon nanotube field effect transistors performance based on changes in gate parameters.
    Shirazi SG; Mirzakuchaki S
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10424-8. PubMed ID: 22408919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length scaling of carbon nanotube transistors.
    Franklin AD; Chen Z
    Nat Nanotechnol; 2010 Dec; 5(12):858-62. PubMed ID: 21102468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer.
    Weitz RT; Zschieschang U; Effenberger F; Klauk H; Burghard M; Kern K
    Nano Lett; 2007 Jan; 7(1):22-7. PubMed ID: 17212434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.