BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25187996)

  • 21. Sonochemical-assisted synthesis of CuO/Cu
    Mosleh S; Rahimi MR; Ghaedi M; Dashtian K; Hajati S
    Ultrason Sonochem; 2018 Jan; 40(Pt A):601-610. PubMed ID: 28946465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of CuAg/Cu
    Nazir R; Kumar A; Ali Saleh Saad M; Ali S
    J Colloid Interface Sci; 2020 Oct; 578():726-737. PubMed ID: 32574908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FTIR analysis of the metabolomic stress response induced by N-alkyltropinium bromide surfactants in the yeasts Saccharomyces cerevisiae and Candida albicans.
    Corte L; Tiecco M; Roscini L; Germani R; Cardinali G
    Colloids Surf B Biointerfaces; 2014 Apr; 116():761-71. PubMed ID: 24582147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oleylamine as a beneficial agent for the synthesis of CoFe₂O₄ nanoparticles with potential biomedical uses.
    Georgiadou V; Kokotidou C; Le Droumaguet B; Carbonnier B; Choli-Papadopoulou T; Dendrinou-Samara C
    Dalton Trans; 2014 May; 43(17):6377-88. PubMed ID: 24604256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates.
    Mohamed EA
    Heliyon; 2020 Jan; 6(1):e03123. PubMed ID: 32042937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of uniform CuO nanorods by spontaneous aggregation: Selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process.
    Yao WT; Yu SH; Zhou Y; Jiang J; Wu QS; Zhang L; Jiang J
    J Phys Chem B; 2005 Jul; 109(29):14011-6. PubMed ID: 16852759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assembly synthesis of Cu2O-on-Cu nanowires with visible-light-enhanced photocatalytic activity.
    Chen H; Tu T; Wen M; Wu Q
    Dalton Trans; 2015 Sep; 44(35):15645-52. PubMed ID: 26247173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity.
    Wang Z; Li N; Zhao J; White JC; Qu P; Xing B
    Chem Res Toxicol; 2012 Jul; 25(7):1512-21. PubMed ID: 22686560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-Pot Surface Modification of β-Cu
    Abbas G; Pandey G; Singh KB; Gautam N
    ACS Omega; 2021 Nov; 6(44):29380-29393. PubMed ID: 34778611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu
    Pike SD; White ER; Regoutz A; Sammy N; Payne DJ; Williams CK; Shaffer MS
    ACS Nano; 2017 Mar; 11(3):2714-2723. PubMed ID: 28286946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro activities of transition metal derivatives of ketoconazole and clotrimazole against a wild type strain of Saccharomyces cerevisiae in absence or presence of human neutrophils.
    Navarro M; Colmenares I; Correia H; Hernández A; Ching Y; Millán Y; Ojeda LE; Velásquez M; Fraile G
    Arzneimittelforschung; 2004; 54(11):746-51. PubMed ID: 15612615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serum adsorption, cellular internalization and consequent impact of cuprous oxide nanoparticles on uveal melanoma cells: implications for cancer therapy.
    Song H; Xu Q; Zhu Y; Zhu S; Tang H; Wang Y; Ren H; Zhao P; Qi Z; Zhao S
    Nanomedicine (Lond); 2015; 10(24):3547-62. PubMed ID: 26467678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes.
    Bulcke F; Thiel K; Dringen R
    Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-enhanced Raman scattering studies of Cu/Cu
    Dizajghorbani Aghdam H; Moemen Bellah S; Malekfar R
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117379. PubMed ID: 31323492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realization of Tunable Localized Surface Plasmon Resonance of Cu@Cu
    Yin H; Zhao Y; Xu X; Chen J; Wang X; Yu J; Wang J; Wu W
    ACS Omega; 2019 Sep; 4(11):14404-14410. PubMed ID: 31528793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size dependency of PLGA-nanoparticle uptake and antifungal activity against Aspergillus flavus.
    Patel NR; Damann K; Leonardi C; Sabliov CM
    Nanomedicine (Lond); 2011 Oct; 6(8):1381-95. PubMed ID: 21651442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicity of CuO nanoparticles and Cu ions to tight epithelial cells from Xenopus laevis (A6): effects on proliferation, cell cycle progression and cell death.
    Thit A; Selck H; Bjerregaard HF
    Toxicol In Vitro; 2013 Aug; 27(5):1596-601. PubMed ID: 23268107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorbed Tween 80 is unique in its ability to improve the stability of gold nanoparticles in solutions of biomolecules.
    Zhao Y; Wang Z; Zhang W; Jiang X
    Nanoscale; 2010 Oct; 2(10):2114-9. PubMed ID: 20697612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitivity of Saccharomyces cerevisiae to the cell-penetrating antifungal peptide PAF26 correlates with endogenous nitric oxide (NO) production.
    Carmona L; Gandía M; López-García B; Marcos JF
    Biochem Biophys Res Commun; 2012 Jan; 417(1):56-61. PubMed ID: 22120633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable morphology and conductivity of electrodeposited Cu₂O thin film: effect of surfactants.
    Yang Y; Han J; Ning X; Cao W; Xu W; Guo L
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22534-43. PubMed ID: 25453498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.