These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 25188430)
1. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. Ning G; Ma X; Zhu X; Cao Y; Sun Y; Qi C; Fan Z; Li Y; Zhang X; Lan X; Gao J ACS Appl Mater Interfaces; 2014 Sep; 6(18):15950-8. PubMed ID: 25188430 [TBL] [Abstract][Full Text] [Related]
2. MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li-Se batteries with superior storage capacity and perfect cycling stability. Li Z; Yin L Nanoscale; 2015 Jun; 7(21):9597-606. PubMed ID: 25951942 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. Li Z; Yin L ACS Appl Mater Interfaces; 2015 Feb; 7(7):4029-38. PubMed ID: 25625174 [TBL] [Abstract][Full Text] [Related]
4. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes. Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439 [TBL] [Abstract][Full Text] [Related]
5. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries. Yang CP; Yin YX; Ye H; Jiang KC; Zhang J; Guo YG ACS Appl Mater Interfaces; 2014 Jun; 6(11):8789-95. PubMed ID: 24764111 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876 [TBL] [Abstract][Full Text] [Related]
7. Coralline-Like N-Doped Hierarchically Porous Carbon Derived from Enteromorpha as a Host Matrix for Lithium-Sulfur Battery. Ji S; Imtiaz S; Sun D; Xin Y; Li Q; Huang T; Zhang Z; Huang Y Chemistry; 2017 Dec; 23(72):18208-18215. PubMed ID: 28967160 [TBL] [Abstract][Full Text] [Related]
8. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. Ma X; Ning G; Qi C; Xu C; Gao J ACS Appl Mater Interfaces; 2014 Aug; 6(16):14415-22. PubMed ID: 25105538 [TBL] [Abstract][Full Text] [Related]
9. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
10. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Xu G; Ding B; Nie P; Shen L; Wang J; Zhang X Chemistry; 2013 Sep; 19(37):12306-12. PubMed ID: 23881725 [TBL] [Abstract][Full Text] [Related]
11. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries. Goriparti S; Miele E; Prato M; Scarpellini A; Marras S; Monaco S; Toma A; Messina GC; Alabastri A; De Angelis F; Manna L; Capiglia C; Zaccaria RP ACS Appl Mater Interfaces; 2015 Nov; 7(45):25139-46. PubMed ID: 26492841 [TBL] [Abstract][Full Text] [Related]
12. Porous carbon anodes for a high capacity lithium-ion battery obtained by incorporating silica into benzoxazine during polymerization. Guo DC; Han F; Lu AH Chemistry; 2015 Jan; 21(4):1520-5. PubMed ID: 25428788 [TBL] [Abstract][Full Text] [Related]
13. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. Yang Y; Jin S; Zhang Z; Du Z; Liu H; Yang J; Xu H; Ji H ACS Appl Mater Interfaces; 2017 Apr; 9(16):14180-14186. PubMed ID: 28387517 [TBL] [Abstract][Full Text] [Related]
14. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode. Kang W; Tang Y; Li W; Yang X; Xue H; Yang Q; Lee CS Nanoscale; 2015 Jan; 7(1):225-31. PubMed ID: 25406536 [TBL] [Abstract][Full Text] [Related]
15. Boosting the Potassium-Ion Storage Performance in Soft Carbon Anodes by the Synergistic Effect of Optimized Molten Salt Medium and N/S Dual-Doping. Liu Q; Han F; Zhou J; Li Y; Chen L; Zhang F; Zhou D; Ye C; Yang J; Wu X; Liu J ACS Appl Mater Interfaces; 2020 May; 12(18):20838-20848. PubMed ID: 32294380 [TBL] [Abstract][Full Text] [Related]
16. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155 [TBL] [Abstract][Full Text] [Related]
18. Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries. Ma R; Fan L; Chen S; Wei Z; Yang Y; Yang H; Qin Y; Lu B ACS Appl Mater Interfaces; 2018 May; 10(18):15751-15759. PubMed ID: 29664614 [TBL] [Abstract][Full Text] [Related]
19. Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. Kim MS; Bhattacharjya D; Fang B; Yang DS; Bae TS; Yu JS Langmuir; 2013 Jun; 29(22):6754-61. PubMed ID: 23688326 [TBL] [Abstract][Full Text] [Related]
20. Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Dong WD; Yu WB; Xia FJ; Chen LD; Zhang YJ; Tan HG; Wu L; Hu ZY; Mohamed HSH; Liu J; Deng Z; Li Y; Chen LH; Su BL J Colloid Interface Sci; 2021 Jan; 582(Pt A):60-69. PubMed ID: 32814224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]