BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25188451)

  • 1. Characterization and NO inhibitory activities of chemical constituents from an edible plant Petasites tatewakianus.
    Wang M; Zhang Q; Wang H; Ren Q; Sun Y; Xie C; Xu J; Jin DQ; Ohizumi Y; Guo Y
    J Agric Food Chem; 2014 Sep; 62(38):9362-7. PubMed ID: 25188451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bakkenolides from Petasites tatewakianus.
    Dong XW; Li RJ; Gao X; Row KH
    Fitoterapia; 2010 Apr; 81(3):153-6. PubMed ID: 19686812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sesquiterpenes inhibiting the microglial activation from Laurus nobilis.
    Chen H; Xie C; Wang H; Jin DQ; Li S; Wang M; Ren Q; Xu J; Ohizumi Y; Guo Y
    J Agric Food Chem; 2014 May; 62(20):4784-8. PubMed ID: 24801989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new neuroprotective bakkenolide from the rhizome of Peatasites tatewakianus.
    Sun ZL; Gao GL; Luo JY; Zhang XL; Zhang M; Feng J
    Fitoterapia; 2011 Apr; 82(3):401-4. PubMed ID: 21111792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, characterization, and neuroprotective activities of sesquiterpenes from Petasites japonicus.
    Wang S; Jin DQ; Xie C; Wang H; Wang M; Xu J; Guo Y
    Food Chem; 2013 Dec; 141(3):2075-82. PubMed ID: 23870930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory constituents from the aerial parts of Polygala tenuifolia on LPS-induced NO production in BV2 microglia cells.
    Shi TX; Wang S; Zeng KW; Tu PF; Jiang Y
    Bioorg Med Chem Lett; 2013 Nov; 23(21):5904-8. PubMed ID: 24042007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.
    Xu J; Ji F; Kang J; Wang H; Li S; Jin DQ; Zhang Q; Sun H; Guo Y
    J Agric Food Chem; 2015 Jun; 63(24):5805-12. PubMed ID: 26027687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory constituents of Euonymus alatus leaves and twigs on nitric oxide production in BV2 microglia cells.
    Jeong EJ; Yang H; Kim SH; Kang SY; Sung SH; Kim YC
    Food Chem Toxicol; 2011 Jun; 49(6):1394-8. PubMed ID: 21426922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of sesquiterpenes from Celastrus orbiculatus and their antifungal activities against phytopathogenic fungi.
    Wang M; Zhang Q; Ren Q; Kong X; Wang L; Wang H; Xu J; Guo Y
    J Agric Food Chem; 2014 Nov; 62(45):10945-53. PubMed ID: 25331421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, characterization, and NO inhibitory activities of sesquiterpenes from Blumea balsamifera.
    Xu J; Jin DQ; Liu C; Xie C; Guo Y; Fang L
    J Agric Food Chem; 2012 Aug; 60(32):8051-8. PubMed ID: 22823402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide inhibitory constituents from the barks of Cinnamomum cassia.
    He S; Zeng KW; Jiang Y; Tu PF
    Fitoterapia; 2016 Jul; 112():153-60. PubMed ID: 27223848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-neuroinflammatory constituents from Polygala tricornis Gagnep.
    Li J; Zeng KW; Shi SP; Jiang Y; Tu PF
    Fitoterapia; 2012 Jul; 83(5):896-900. PubMed ID: 22498345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New steroids and sesquiterpene from Turraea pubescens.
    Yuan CM; Tang GH; Wang XY; Zhang Y; Cao MM; Li XH; Li Y; Li SL; Di YT; He HP; Hao XJ; Hua HM
    Fitoterapia; 2013 Oct; 90():119-25. PubMed ID: 23856090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochemical constituents of the pericarps of
    Ning DS; Fu YX; Peng LY; Tang H; Li LC; Wu XD; Huang YS; Pan ZH
    Nat Prod Res; 2020 Jun; 34(12):1756-1762. PubMed ID: 30580629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-inflammatory homoisoflavonoids from the tuberous roots of Ophiopogon japonicus.
    Li N; Zhang JY; Zeng KW; Zhang L; Che YY; Tu PF
    Fitoterapia; 2012 Sep; 83(6):1042-5. PubMed ID: 22626747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sesquiterpenes from Vladimiria souliei and their inhibitory effects on NO production.
    Xu J; Jin D; Shi D; Ma Y; Yang B; Zhao P; Guo Y
    Fitoterapia; 2011 Apr; 82(3):508-11. PubMed ID: 21238550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia.
    Lee SY; Moon E; Kim SY; Lee KR
    Bioorg Med Chem Lett; 2013 Apr; 23(7):2140-4. PubMed ID: 23462643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylethanoid glycosides with anti-inflammatory activities from the stems of Cistanche deserticola cultured in Tarim desert.
    Nan ZD; Zeng KW; Shi SP; Zhao MB; Jiang Y; Tu PF
    Fitoterapia; 2013 Sep; 89():167-74. PubMed ID: 23685247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical constituents of Miliusa balansae leaves and inhibition of nitric oxide production in lipopolysaccharide-induced RAW 264.7 cells.
    Thao NP; Luyen BT; Tai BH; Cuong NM; Kim YC; Minh CV; Kim YH
    Bioorg Med Chem Lett; 2015 Sep; 25(18):3859-63. PubMed ID: 26238320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-allergic and anti-inflammatory effects of bakkenolide B isolated from Petasites japonicus leaves.
    Lee KP; Kang S; Park SJ; Choi YW; Lee YG; Im DS
    J Ethnopharmacol; 2013 Jul; 148(3):890-4. PubMed ID: 23711828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.