These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25188676)
1. Single-molecule insights into retention at a reversed-phase chromatographic interface. Mabry JN; Skaug MJ; Schwartz DK Anal Chem; 2014 Oct; 86(19):9451-8. PubMed ID: 25188676 [TBL] [Abstract][Full Text] [Related]
2. Effect of trimethylsilane pre-capping on monomeric C18 stationary phases made from high-purity type-B silica substrates: efficiency, retention, and stability. Bair MD; Dorsey JG J Chromatogr A; 2012 Jan; 1220():35-43. PubMed ID: 22176738 [TBL] [Abstract][Full Text] [Related]
3. Insights from molecular simulations about dead time markers in reversed-phase liquid chromatography. Trebel N; Höltzel A; Steinhoff A; Tallarek U J Chromatogr A; 2021 Mar; 1640():461958. PubMed ID: 33582514 [TBL] [Abstract][Full Text] [Related]
4. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface. Kisley L; Poongavanam MV; Kourentzi K; Willson RC; Landes CF J Sep Sci; 2016 Feb; 39(4):682-8. PubMed ID: 26377146 [TBL] [Abstract][Full Text] [Related]
5. [Adsorption, separation, and purification of cyclosporine A using reversed-phase liquid chromatography]. Li Z; Fu Q; Dai Z; Jin Y; Liang X Se Pu; 2022 Jan; 40(1):66-73. PubMed ID: 34985217 [TBL] [Abstract][Full Text] [Related]
6. Probing strong adsorption of solute onto C18-silica gel by fluorescence correlation imaging and single-molecule spectroscopy under RPLC conditions. Zhong Z; Lowry M; Wang G; Geng L Anal Chem; 2005 Apr; 77(8):2303-10. PubMed ID: 15828761 [TBL] [Abstract][Full Text] [Related]
7. Preparation and chromatographic evaluation of a novel phosphate ester-bonded stationary phase with complexation and hydrophobic interactions retention mechanism. Cheng XD; Peng XT; Yu QW; Yuan BF; Feng YQ J Chromatogr A; 2013 Aug; 1302():81-7. PubMed ID: 23827467 [TBL] [Abstract][Full Text] [Related]
8. Retention loss of reversed-phase chromatographic columns using 100% aqueous mobile phases from fundamental insights to best practice. Gritti F; Gilar M; Walter TH; Wyndham K J Chromatogr A; 2020 Feb; 1612():460662. PubMed ID: 31690460 [TBL] [Abstract][Full Text] [Related]
9. Organic-solvent ditch overlap in reversed-phase liquid chromatography: A molecular dynamics simulation study in cylindrical 6-12 nm-diameter pores. Tallarek U; Trebel N; Frerichs D; Steinhoff A; Höltzel A J Chromatogr A; 2024 Jul; 1726():464960. PubMed ID: 38718695 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles. Cooper JT; Peterson EM; Harris JM Anal Chem; 2013 Oct; 85(19):9363-70. PubMed ID: 23998479 [TBL] [Abstract][Full Text] [Related]
11. Physical origin of peak tailing on C18-bonded silica in reversed-phase liquid chromatography. Gritti F; Guiochon G J Chromatogr A; 2004 Feb; 1028(1):75-88. PubMed ID: 14969283 [TBL] [Abstract][Full Text] [Related]
12. Prediction of surface excess adsorption and retention factors in reversed-phase liquid chromatography from molecular dynamics simulations. Gritti F; Trebel N; Höltzel A; Tallarek U J Chromatogr A; 2022 Dec; 1685():463627. PubMed ID: 36370628 [TBL] [Abstract][Full Text] [Related]
13. A chromatographic estimate of the degree of heterogeneity of RPLC packing materials. 1. Non-endcapped polymeric C30-bonded stationary phase. Gritti F; Guiochon G J Chromatogr A; 2006 Jan; 1103(1):43-56. PubMed ID: 16337638 [TBL] [Abstract][Full Text] [Related]
14. On the enantioselectivity of the mass transfer kinetics and the adsorption equilibrium of Naproxen on the chiral stationary phase (R,R)-Whelk-O1 under reversed-phase conditions. Asnin L; Horváth K; Guiochon G J Chromatogr A; 2010 Feb; 1217(8):1320-31. PubMed ID: 20079905 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography. Gritti F; Pereira Ados S; Sandra P; Guiochon G J Chromatogr A; 2009 Nov; 1216(48):8496-504. PubMed ID: 19853257 [TBL] [Abstract][Full Text] [Related]
16. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography. Rafferty JL; Siepmann JI; Schure MR J Chromatogr A; 2012 Feb; 1223():24-34. PubMed ID: 22239960 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds. Jandera P; Bocian S; Molíková M; Buszewski B J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105 [TBL] [Abstract][Full Text] [Related]
19. Microscopic origins of band broadening in chromatography. Polarity distribution in C(18) stationary phase probed by confocal ratiometric imaging of Nile red. Zhong Z; Geng ML Anal Chem; 2007 Sep; 79(17):6709-17. PubMed ID: 17663533 [TBL] [Abstract][Full Text] [Related]
20. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation. Rafferty JL; Siepmann JI; Schure MR J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]