These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25188787)

  • 1. Development of an inverse approach for the characterization of in vivo mechanical properties of the lower limb muscles.
    Affagard JS; Bensamoun SF; Feissel P
    J Biomech Eng; 2014 Nov; 136(11):. PubMed ID: 25188787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of hyperelastic properties of passive thigh muscle under compression with an inverse method from a displacement field measurement.
    Affagard JS; Feissel P; Bensamoun SF
    J Biomech; 2015 Nov; 48(15):4081-4086. PubMed ID: 26602374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.
    Silva MET; Brandão S; Parente MPL; Mascarenhas T; Natal Jorge RM
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):842-852. PubMed ID: 28303730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo.
    Moerman KM; Holt CA; Evans SL; Simms CK
    J Biomech; 2009 May; 42(8):1150-3. PubMed ID: 19362312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishing the biomechanical properties of the pelvic soft tissues through an inverse finite element analysis using magnetic resonance imaging.
    Silva ME; Brandão S; Parente MP; Mascarenhas T; Natal Jorge RM
    Proc Inst Mech Eng H; 2016 Apr; 230(4):298-309. PubMed ID: 26867781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of the deformation of deep veins in the lower limb under external compression.
    Wang Y; Downie S; Wood N; Firmin D; Xu XY
    Med Eng Phys; 2013 Apr; 35(4):515-23. PubMed ID: 22819344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical study on the mechanical behavior of the superficial layers of the face.
    Barbarino GG; Jabareen M; Mazza E
    Skin Res Technol; 2011 Nov; 17(4):434-44. PubMed ID: 21362059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the in-plane biomechanical properties of human skin using a finite element model updating approach combined with an optical full-field measurement on a new tensile device.
    Boyer G; Molimard J; Ben Tkaya M; Zahouani H; Pericoi M; Avril S
    J Mech Behav Biomed Mater; 2013 Nov; 27():273-82. PubMed ID: 23867292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques.
    Tran HV; Charleux F; Rachik M; Ehrlacher A; Ho Ba Tho MC
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):401-7. PubMed ID: 17891674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests.
    Ridha H; Thurner PJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():94-106. PubMed ID: 23890577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniaxial and biaxial mechanical properties of porcine linea alba.
    Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK
    J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.
    Hoffseth K; Randall C; Hansma P; Yang HT
    J Mech Behav Biomed Mater; 2015 Feb; 42():282-91. PubMed ID: 25528690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining the feasibility of applying principal component analysis to detecting localized changes in mechanical properties.
    Leineweber M; Gao Y
    J Biomech; 2015 Jan; 48(2):262-8. PubMed ID: 25498369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel procedure for the mechanical characterization of the uterine cervix during pregnancy.
    Badir S; Bajka M; Mazza E
    J Mech Behav Biomed Mater; 2013 Nov; 27():143-53. PubMed ID: 23274486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of fracture toughness of liver tissue: experiments and validation.
    Gokgol C; Basdogan C; Canadinc D
    Med Eng Phys; 2012 Sep; 34(7):882-91. PubMed ID: 22024208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the Biomechanical Properties of the Pubovisceralis Muscle Using a Genetic Algorithm and the Finite Element Method.
    Silva E; Parente M; Brandão S; Mascarenhas T; Natal Jorge R
    J Biomech Eng; 2019 Jan; 141(1):. PubMed ID: 30458502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid approach to determining cornea mechanical properties in vivo using a combination of nano-indentation and inverse finite element analysis.
    Abyaneh MH; Wildman RD; Ashcroft IA; Ruiz PD
    J Mech Behav Biomed Mater; 2013 Nov; 27():239-48. PubMed ID: 23816808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of carotid plaque tissue properties using an experimental-numerical approach.
    Heiland VM; Forsell C; Roy J; Hedin U; Gasser TC
    J Mech Behav Biomed Mater; 2013 Nov; 27():226-38. PubMed ID: 23790614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.