These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25188793)

  • 1. The key role of geminate electron-hole pair recombination in the delayed fluorescence in rhodamine 6G and ATTO-532.
    Aydemir M; Jankus V; Dias FB; Monkman A
    Phys Chem Chem Phys; 2014 Oct; 16(39):21543-9. PubMed ID: 25188793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplet-state investigations of fluorescent dyes at dielectric interfaces using total internal reflection fluorescence correlation spectroscopy.
    Blom H; Chmyrov A; Hassler K; Davis LM; Widengren J
    J Phys Chem A; 2009 May; 113(19):5554-66. PubMed ID: 19374408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of molecular diffusion of rhodamine 6G in silica nanochannels.
    Kievsky YY; Carey B; Naik S; Mangan N; ben-Avraham D; Sokolov I
    J Chem Phys; 2008 Apr; 128(15):151102. PubMed ID: 18433183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fluorescence enhancement and laser behavior of Rhodamine 6G in micell].
    Zhong X; Yang J; Ha Y; Meng J; Li Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):450-3. PubMed ID: 12945258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy.
    Eggeling C; Volkmer A; Seidel CA
    Chemphyschem; 2005 May; 6(5):791-804. PubMed ID: 15884061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance-energy-transfer in systems of Rhodamine 6G with ionic liquid showing emissions by excitation at wide wavelength areas.
    Izawa H; Wakizono S; Kadokawa J
    Chem Commun (Camb); 2010 Sep; 46(34):6359-61. PubMed ID: 20694230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate.
    Saini GS; Kaur S; Tripathi SK; Mahajan CG; Thanga HH; Verma AL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):653-8. PubMed ID: 15649797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy.
    Neubauer H; Gaiko N; Berger S; Schaffer J; Eggeling C; Tuma J; Verdier L; Seidel CA; Griesinger C; Volkmer A
    J Am Chem Soc; 2007 Oct; 129(42):12746-55. PubMed ID: 17900110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
    Zehentbauer FM; Moretto C; Stephen R; Thevar T; Gilchrist JR; Pokrajac D; Richard KL; Kiefer J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():147-51. PubMed ID: 24239710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence and Time-Delayed Lasing during Single Laser Pulse Excitation of a Pendant mm-Sized Dye Droplet.
    Boni M; Andrei IR; Pascu ML; Staicu A
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31817499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic insights on selfassembly and excited state interactions between rhodamine and phthalocyanine molecules.
    Geng H; Zhang XF
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():13-9. PubMed ID: 25546492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of single dye molecules observed by confocal imaging and spectroscopy.
    Weber MA; Stracke F; Meixner AJ
    Cytometry; 1999 Jul; 36(3):217-23. PubMed ID: 10404971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy.
    Xie L; Ling X; Fang Y; Zhang J; Liu Z
    J Am Chem Soc; 2009 Jul; 131(29):9890-1. PubMed ID: 19572745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites.
    Vogel R; Meredith P; Harvey MD; Rubinsztein-Dunlop H
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jan; 60(1-2):245-9. PubMed ID: 14670484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)?
    Ghosh S; Roy A; Banik D; Kundu N; Kuchlyan J; Dhir A; Sarkar N
    Langmuir; 2015 Mar; 31(8):2310-20. PubMed ID: 25643899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced electron transfer and geminate recombination in the group head region of micelles.
    Glusac K; Goun A; Fayer MD
    J Chem Phys; 2006 Aug; 125(5):054712. PubMed ID: 16942246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic interactions of fluorescent molecules with dielectric interfaces studied by total internal reflection fluorescence correlation spectroscopy.
    Blom H; Hassler K; Chmyrov A; Widengren J
    Int J Mol Sci; 2010 Jan; 11(2):386-406. PubMed ID: 20386645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission of Au nanoparticles with and without rhodamine 6G dye.
    Zhu G; Gavrilenko VI; Noginov MA
    J Chem Phys; 2007 Sep; 127(10):104503. PubMed ID: 17867757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Interfacial Effects on the Photophysics of Rhodamine 6G Thin Films on a Poly(vinylidene fluoride) Surface.
    Mullen M; Euler WB
    Langmuir; 2017 Mar; 33(9):2194-2204. PubMed ID: 28195482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.