These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25189068)

  • 1. Do omnivorous shrimp influence mayfly nymph life history traits in a tropical island stream?
    Macías NA; Colón-Gaud C; Duggins JW; Ramírez A
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():41-51. PubMed ID: 25189068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference.
    Wright MS; Covich AP
    Microb Ecol; 2005 May; 49(4):536-46. PubMed ID: 16052374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream.
    Rincón J; Covich A
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():143-54. PubMed ID: 25189075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass.
    Pringle CM; Blake GA; Covich AP; Buzby KM; Finley A
    Oecologia; 1993 Feb; 93(1):1-11. PubMed ID: 28313766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grazer traits, competition, and carbon sources to a headwater-stream food web.
    McNeely C; Finlay JC; Power ME
    Ecology; 2007 Feb; 88(2):391-401. PubMed ID: 17479757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Land use effects on leaf litter breakdown in low-order streams draining a rapidly developing tropical watershed in Puerto Rico.
    Torres PJ; Ramírez A
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():129-42. PubMed ID: 25189074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mayfly emergence production and body length response to hydrology in a tropical lowland stream.
    Gutiérrez-Fonseca PE; Ramírez A
    PeerJ; 2020; 8():e9883. PubMed ID: 32953278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Habitat partitioning among the mayfly species (Ephemeroptera) of Yuccabine Creek, a tropical Australian stream.
    Hearnden MN; Pearson RG
    Oecologia; 1991 Jun; 87(1):91-101. PubMed ID: 28313357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitness and community consequences of avoiding multiple predators.
    Peckarsky BL; McIntosh AR
    Oecologia; 1998 Feb; 113(4):565-576. PubMed ID: 28308037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicological responses of the mayfly Baetis tricaudatus to dietary and waterborne cadmium: implications for toxicity testing.
    Irving EC; Baird DJ; Culp JM
    Environ Toxicol Chem; 2003 May; 22(5):1058-64. PubMed ID: 12729215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freshwater decapods of Puerto Rico: a checklist and reports of new localities.
    Pérez-Reyes O; Crowl TA; Hernández-García PJ; Ledesma-Fusté R; Villar-Fornes FA; Covich AP
    Zootaxa; 2013; 3717():329-44. PubMed ID: 26176109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evidence for sequential colonization and taxon cycling in freshwater decapod shrimps on a Caribbean island.
    Cook BD; Pringle CM; Hughes JM
    Mol Ecol; 2008 Feb; 17(4):1066-75. PubMed ID: 18261048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change.
    Harper MP; Peckarsky BL
    Ecol Appl; 2006 Apr; 16(2):612-21. PubMed ID: 16711048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment of Hexagenia mayfly nymphs in western Lake Erie linked to environmental variability.
    Bridgeman TB; Schloesser DW; Krause AE
    Ecol Appl; 2006 Apr; 16(2):601-11. PubMed ID: 16711047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food rationing affects dietary selenium bioaccumulation and life cycle performance in the mayfly Centroptilum triangulifer.
    Conley JM; Funk DH; Cariello NJ; Buchwalter DB
    Ecotoxicology; 2011 Nov; 20(8):1840-51. PubMed ID: 21701843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effects of predatory fish and sublethal pesticide contamination on the behavior and mortality of mayfly nymphs.
    Schulz R; Dabrowski JM
    Environ Toxicol Chem; 2001 Nov; 20(11):2537-43. PubMed ID: 11699780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do small-scale exclosure/enclosure experiments predict the effects of large-scale extirpation of freshwater migratory fauna?
    Greathouse EA; Pringle CM; McDowell WH
    Oecologia; 2006 Oct; 149(4):709-17. PubMed ID: 16823563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect upstream effects of dams: consequences of migratory consumer extirpation in Puerto Rico.
    Greathouse EA; Pringle CM; McDowell WH; Holmquist JG
    Ecol Appl; 2006 Feb; 16(1):339-52. PubMed ID: 16705984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental test of the effects of food resources and hydraulic refuge on patch colonization by stream macroinvertebrates during spates.
    Negishi JN; Richardson JS
    J Anim Ecol; 2006 Jan; 75(1):118-29. PubMed ID: 16903049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of the nymph of Massartella alegrettae Ulmer, 1943 (Ephemeroptera: Leptophlebiidae: Atalophlebiinae) with a key to Massartella Lestage, 1930 nymphs.
    Souto PM; Da-Silva ER; Nessimian JL
    Zootaxa; 2013; 3681():583-8. PubMed ID: 25232630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.