These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25189131)

  • 21. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.
    He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ
    J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information.
    Kumar M; Gromiha MM; Raghava GP
    J Mol Recognit; 2011; 24(2):303-13. PubMed ID: 20677174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BindWeb: A web server for ligand binding residue and pocket prediction from protein structures.
    Xia Y; Xia C; Pan X; Shen HB
    Protein Sci; 2022 Dec; 31(12):e4462. PubMed ID: 36190332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A protein structural classes prediction method based on PSI-BLAST profile.
    Ding S; Yan S; Qi S; Li Y; Yao Y
    J Theor Biol; 2014 Jul; 353():19-23. PubMed ID: 24607742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ATPbind: Accurate Protein-ATP Binding Site Prediction by Combining Sequence-Profiling and Structure-Based Comparisons.
    Hu J; Li Y; Zhang Y; Yu DJ
    J Chem Inf Model; 2018 Feb; 58(2):501-510. PubMed ID: 29361215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues.
    Xia Y; Xia CQ; Pan X; Shen HB
    Nucleic Acids Res; 2021 May; 49(9):e51. PubMed ID: 33577689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MutTMPredictor: Robust and accurate cascade XGBoost classifier for prediction of mutations in transmembrane proteins.
    Ge F; Zhu YH; Xu J; Muhammad A; Song J; Yu DJ
    Comput Struct Biotechnol J; 2021; 19():6400-6416. PubMed ID: 34938415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-protein interaction sites.
    Murakami Y; Mizuguchi K
    Bioinformatics; 2010 Aug; 26(15):1841-8. PubMed ID: 20529890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection.
    Pan XY; Shen HB
    Protein Pept Lett; 2009; 16(12):1447-54. PubMed ID: 20001907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of NAD interacting residues in proteins.
    Ansari HR; Raghava GP
    BMC Bioinformatics; 2010 Mar; 11():160. PubMed ID: 20353553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes.
    Lou W; Wang X; Chen F; Chen Y; Jiang B; Zhang H
    PLoS One; 2014; 9(1):e86703. PubMed ID: 24475169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A feature-based approach to predict hot spots in protein-DNA binding interfaces.
    Zhang S; Zhao L; Zheng CH; Xia J
    Brief Bioinform; 2020 May; 21(3):1038-1046. PubMed ID: 30957840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly accurate prediction of protein self-interactions by incorporating the average block and PSSM information into the general PseAAC.
    Zhai JX; Cao TJ; An JY; Bian YT
    J Theor Biol; 2017 Nov; 432():80-86. PubMed ID: 28802824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-Based Cube-Format Feature.
    Hu J; Bai YS; Zheng LL; Jia NX; Yu DJ; Zhang GJ
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3635-3645. PubMed ID: 34714748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PiRaNhA: a server for the computational prediction of RNA-binding residues in protein sequences.
    Murakami Y; Spriggs RV; Nakamura H; Jones S
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W412-6. PubMed ID: 20507911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CoABind: a novel algorithm for Coenzyme A (CoA)- and CoA derivatives-binding residues prediction.
    Meng Q; Peng Z; Yang J
    Bioinformatics; 2018 Aug; 34(15):2598-2604. PubMed ID: 29547921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.