These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 25189414)

  • 41. [Effect of SO2 volume fraction in flue gas on the adsorption behaviors adsorbed by ZL50 activated carbon and kinetic analysis].
    Gao JX; Wang TF; Wang JF
    Huan Jing Ke Xue; 2010 May; 31(5):1152-9. PubMed ID: 20623845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Simultaneous removal of SO2 and NO2 using a Mg-Al oxide slurry treatment.
    Kameda T; Kodama A; Yoshioka T
    Chemosphere; 2013 Nov; 93(11):2889-93. PubMed ID: 24125705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of SO2 from simulated flue gases using non-thermal plasma-based microgap discharge.
    Zhang Z; Bai M; Bai M; Bai X; Pan Q
    J Air Waste Manag Assoc; 2006 Jun; 56(6):810-5. PubMed ID: 16805405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous sulfur dioxide and mercury removal during low-rank coal combustion by natural zeolite.
    Gani A; Wattimena Y; Erdiwansyah ; Mahidin ; Muhibbuddin ; Riza M
    Heliyon; 2021 May; 7(5):e07052. PubMed ID: 34036205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study.
    Li Y; Tong H; Zhuo Y; Wang S; Xu X
    Environ Sci Technol; 2006 Dec; 40(24):7919-24. PubMed ID: 17256549
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adverse Effects of Inherent CaO in Coconut Shell-Derived Activated Carbon on Its Performance during Flue Gas Desulfurization.
    Zhao Y; Dou J; Duan X; Chai H; Oliveira J; Yu J
    Environ Sci Technol; 2020 Feb; 54(3):1973-1981. PubMed ID: 31913026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Preparation of titanium dioxide particles and properties for flue gas desulfurization].
    Luo Y; Li D; Huang Z
    Huan Jing Ke Xue; 2003 Jan; 24(1):147-51. PubMed ID: 12708308
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reaction behavior of SO2 in the sintering process with flue gas recirculation.
    Yu ZY; Fan XH; Gan M; Chen XL; Chen Q; Huang YS
    J Air Waste Manag Assoc; 2016 Jul; 66(7):687-97. PubMed ID: 27043363
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simultaneous removal of SO
    Wang S; Xu S; Gao S; Xiao P; Jiang M; Zhao H; Huang B; Liu L; Niu H; Wang J; Guo D
    Sci Rep; 2021 May; 11(1):11003. PubMed ID: 34040096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of palm oil mill sludge biochar preparation for sulfur dioxide removal.
    Iberahim N; Sethupathi S; Bashir MJK
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25702-25714. PubMed ID: 28550632
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A case study for removal of sulphur-di-oxide from exhaust flue gases at thermal power plant, Rajasthan (India).
    Sharma R; Acharya S; Sharma AK
    J Environ Sci Eng; 2011 Jan; 53(1):31-8. PubMed ID: 22324143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous removal of NO and SO2 by high-temperature fluidized zero-valent iron processes.
    Chen SS; Cheng CY; Wei CC; Tseng CH
    J Air Waste Manag Assoc; 2007 Mar; 57(3):303-8. PubMed ID: 17385596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of the activation temperature on the SO2 removal capacity and mechanical performance of pelletized activated chars.
    Rubio B; Izquierdo MT; Mayoral MC; Andrés JM
    Environ Technol; 2001 Sep; 22(9):1081-9. PubMed ID: 11816769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of elemental Mercury from flue gas using wheat straw chars modified by K
    Zhou J; Liu Y; Pan J
    Environ Technol; 2017 Dec; 38(23):3047-3054. PubMed ID: 28118784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous removal of NO and SO
    Adewuyi YG; Sakyi NY; Arif Khan M
    Chemosphere; 2018 Feb; 193():1216-1225. PubMed ID: 29874751
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal.
    Izquierdo MT; Rubio B
    J Hazard Mater; 2008 Jun; 155(1-2):199-205. PubMed ID: 18155355
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology.
    Bokotko RP; Hupka J; Miller JD
    Environ Sci Technol; 2005 Feb; 39(4):1184-9. PubMed ID: 15773494
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiform Sulfur Adsorption Centers and Copper-Terminated Active Sites of Nano-CuS for Efficient Elemental Mercury Capture from Coal Combustion Flue Gas.
    Yang Z; Li H; Feng S; Li P; Liao C; Liu X; Zhao J; Yang J; Lee PH; Shih K
    Langmuir; 2018 Jul; 34(30):8739-8749. PubMed ID: 29983072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidation of gaseous elemental mercury in a high voltage discharge reactor.
    Wang M; Zhu T; Luo H; Tang P; Li H
    J Environ Sci (China); 2009; 21(12):1652-7. PubMed ID: 20131594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous desulfurization and denitrification from flue gas by Ferrate(VI).
    Zhao Y; Han Y; Ma T; Guo T
    Environ Sci Technol; 2011 May; 45(9):4060-5. PubMed ID: 21466216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.