These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25189472)

  • 1. Enzyme directed formation of un-natural side-chains for covalent surface attachment of proteins.
    Cho H; Jaworski J
    Colloids Surf B Biointerfaces; 2014 Oct; 122():846-850. PubMed ID: 25189472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced enzyme stability through site-directed covalent immobilization.
    Wu JC; Hutchings CH; Lindsay MJ; Werner CJ; Bundy BC
    J Biotechnol; 2015 Jan; 193():83-90. PubMed ID: 25449015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled surface immobilization of viruses via site-specific enzymatic modification.
    Kwak EA; Jaworski J
    J Mater Chem B; 2013 Jul; 1(28):3486-3493. PubMed ID: 32260940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation specific positioning of organophosphorus hydrolase on solid interfaces for biosensor applications.
    Reeves TE; Paliwal S; Wales ME; Wild JR; Simonian AL
    Langmuir; 2009 Aug; 25(16):9615-8. PubMed ID: 19719232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports.
    López-Gallego F; Montes T; Fuentes M; Alonso N; Grazu V; Betancor L; Guisán JM; Fernández-Lafuente R
    J Biotechnol; 2005 Mar; 116(1):1-10. PubMed ID: 15652425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific, covalent attachment of proteins to a solid surface.
    Duckworth BP; Xu J; Taton TA; Guo A; Distefano MD
    Bioconjug Chem; 2006; 17(4):967-74. PubMed ID: 16848404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of enzymes on heterofunctional epoxy supports.
    Mateo C; Grazu V; Palomo JM; Lopez-Gallego F; Fernandez-Lafuente R; Guisan JM
    Nat Protoc; 2007; 2(5):1022-33. PubMed ID: 17546007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers.
    Botyanszki Z; Tay PK; Nguyen PQ; Nussbaumer MG; Joshi NS
    Biotechnol Bioeng; 2015 Oct; 112(10):2016-24. PubMed ID: 25950512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.
    Ibrahim AS; Al-Salamah AA; El-Toni AM; Almaary KS; El-Tayeb MA; Elbadawi YB; Antranikian G
    Int J Mol Sci; 2016 Jan; 17(2):. PubMed ID: 26840303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties.
    Barbosa O; Torres R; Ortiz C; Berenguer-Murcia A; Rodrigues RC; Fernandez-Lafuente R
    Biomacromolecules; 2013 Aug; 14(8):2433-62. PubMed ID: 23822160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance.
    Hernandez K; Fernandez-Lafuente R
    Enzyme Microb Technol; 2011 Feb; 48(2):107-22. PubMed ID: 22112819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.
    Ba OM; Hindie M; Marmey P; Gallet O; Anselme K; Ponche A; Duncan AC
    Colloids Surf B Biointerfaces; 2015 Oct; 134():73-80. PubMed ID: 26149946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formylglycine-generating enzymes for site-specific bioconjugation.
    Krüger T; Dierks T; Sewald N
    Biol Chem; 2019 Feb; 400(3):289-297. PubMed ID: 30291781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in the site-specific immobilization of proteins onto solid supports.
    Camarero JA
    Biopolymers; 2008; 90(3):450-8. PubMed ID: 17618518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification of enzymes for enhanced functionality.
    DeSantis G; Jones JB
    Curr Opin Biotechnol; 1999 Aug; 10(4):324-30. PubMed ID: 10449313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced protein stability through minimally invasive, direct, covalent, and site-specific immobilization.
    Smith MT; Wu JC; Varner CT; Bundy BC
    Biotechnol Prog; 2013; 29(1):247-54. PubMed ID: 23225632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Molecule Encapsulation: A Straightforward Route to Highly Stable and Printable Enzymes.
    Beloqui A; Baur S; Trouillet V; Welle A; Madsen J; Bastmeyer M; Delaittre G
    Small; 2016 Apr; 12(13):1716-22. PubMed ID: 26849308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of the enzyme beta-lactamase on biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing.
    Zhen G; Eggli V; Vörös J; Zammaretti P; Textor M; Glockshuber R; Kuennemann E
    Langmuir; 2004 Nov; 20(24):10464-73. PubMed ID: 15544374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities.
    Rueda N; Dos Santos JC; Ortiz C; Torres R; Barbosa O; Rodrigues RC; Berenguer-Murcia Á; Fernandez-Lafuente R
    Chem Rec; 2016 Jun; 16(3):1436-55. PubMed ID: 27166751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the design of new epoxy supports for enzyme immobilization-stabilization.
    Mateo C; Grazú V; Pessela BC; Montes T; Palomo JM; Torres R; López-Gallego F; Fernández-Lafuente R; Guisán JM
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1593-601. PubMed ID: 18031273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.