BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25189594)

  • 1. Mi-1.2, an R gene for aphid resistance in tomato, has direct negative effects on a zoophytophagous biocontrol agent, Orius insidiosus.
    Pallipparambil GR; Sayler RJ; Shapiro JP; Thomas JM; Kring TJ; Goggin FL
    J Exp Bot; 2015 Feb; 66(2):549-57. PubMed ID: 25189594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavonoid-producing tomato plants have a direct negative effect on the zoophytophagous biological control agent Orius sauteri.
    Yang F; Zhang X; Shen H; Xue H; Tian T; Zhang Q; Hu J; Tong H; Zhang Y; Su Q
    Insect Sci; 2023 Feb; 30(1):173-184. PubMed ID: 35633508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling.
    Wu C; Avila CA; Goggin FL
    J Exp Bot; 2015 Feb; 66(2):559-70. PubMed ID: 25504643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci.
    Nombela G; Williamson VM; Muñiz M
    Mol Plant Microbe Interact; 2003 Jul; 16(7):645-9. PubMed ID: 12848430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquired and R-gene-mediated resistance against the potato aphid in tomato.
    Cooper WC; Jia L; Goggin FL
    J Chem Ecol; 2004 Dec; 30(12):2527-42. PubMed ID: 15724969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes.
    Seifi A; Kaloshian I; Vossen J; Che D; Bhattarai KK; Fan J; Naher Z; Goverse A; Tjallingii WF; Lindhout P; Visser RG; Bai Y
    Mol Plant Microbe Interact; 2011 Apr; 24(4):441-50. PubMed ID: 21171892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato.
    Mantelin S; Peng HC; Li B; Atamian HS; Takken FL; Kaloshian I
    Plant J; 2011 Aug; 67(3):459-71. PubMed ID: 21481032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coil-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance.
    Bhattarai KK; Xie QG; Pourshalimi D; Younglove T; Kaloshian I
    Mol Plant Microbe Interact; 2007 Mar; 20(3):276-82. PubMed ID: 17378430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene contributes to potato aphid susceptibility in a compatible tomato host.
    Mantelin S; Bhattarai KK; Kaloshian I
    New Phytol; 2009; 183(2):444-456. PubMed ID: 19496947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato.
    Atamian HS; Eulgem T; Kaloshian I
    Planta; 2012 Feb; 235(2):299-309. PubMed ID: 21898085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant.
    Goggin FL; Jia L; Shah G; Hebert S; Williamson VM; Ullman DE
    Mol Plant Microbe Interact; 2006 Apr; 19(4):383-8. PubMed ID: 16610741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene.
    Hebert SL; Jia L; Goggin FL
    Environ Entomol; 2007 Apr; 36(2):458-67. PubMed ID: 17445382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid.
    de Ilarduya OM; Moore AE; Kaloshian I
    Plant J; 2001 Sep; 27(5):417-25. PubMed ID: 11576426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions.
    Martinez de Ilarduya O; Xie Q; Kaloshian I
    Mol Plant Microbe Interact; 2003 Aug; 16(8):699-708. PubMed ID: 12906114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner.
    Avila CA; Arévalo-Soliz LM; Jia L; Navarre DA; Chen Z; Howe GA; Meng QW; Smith JE; Goggin FL
    Plant Physiol; 2012 Apr; 158(4):2028-41. PubMed ID: 22291202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental regulation of Mi-mediated aphid resistance is independent of Mi-1.2 transcript levels.
    Goggin FL; Shah G; Williamson VM; Ullman DE
    Mol Plant Microbe Interact; 2004 May; 17(5):532-6. PubMed ID: 15141957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated O₃ enhances the attraction of whitefly-infested tomato plants to Encarsia formosa.
    Cui H; Su J; Wei J; Hu Y; Ge F
    Sci Rep; 2014 Jun; 4():5350. PubMed ID: 24939561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nematode resistance gene Mi of tomato confers resistance against the potato aphid.
    Rossi M; Goggin FL; Milligan SB; Kaloshian I; Ullman DE; Williamson VM
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9750-4. PubMed ID: 9707547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes.
    Molinari S; Fanelli E; Leonetti P
    Mol Plant Pathol; 2014 Apr; 15(3):255-64. PubMed ID: 24118790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach.
    Harwood JD; Desneux N; Yoo HJ; Rowley DL; Greenstone MH; Obrycki JJ; O'Neil RJ
    Mol Ecol; 2007 Oct; 16(20):4390-400. PubMed ID: 17784913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.