BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25189810)

  • 1. Glycosylation and subsequent malonylation of isoflavonoids in E. coli: strain development, production and insights into future metabolic perspectives.
    Koirala N; Pandey RP; Thang DV; Jung HJ; Sohng JK
    J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1647-58. PubMed ID: 25189810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucosylation of isoflavonoids in engineered Escherichia coli.
    Pandey RP; Parajuli P; Koirala N; Lee JH; Park YI; Sohng JK
    Mol Cells; 2014 Feb; 37(2):172-7. PubMed ID: 24599002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cDNA cloning of a BAHD acyltransferase from soybean (Glycine max): isoflavone 7-O-glucoside-6''-O-malonyltransferase.
    Suzuki H; Nishino T; Nakayama T
    Phytochemistry; 2007 Aug; 68(15):2035-42. PubMed ID: 17602715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli.
    Malla S; Koffas MA; Kazlauskas RJ; Kim BG
    Appl Environ Microbiol; 2012 Feb; 78(3):684-94. PubMed ID: 22101053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 Differently Modify Isoflavone Glucosides in Soybean (
    Ahmad MZ; Li P; Wang J; Rehman NU; Zhao J
    Front Plant Sci; 2017; 8():735. PubMed ID: 28559900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli for the production of isoflavonoid-4'-O-methoxides and their biological activities.
    Koirala N; Pandey RP; Thuan NH; Ghimire GP; Jung HJ; Oh TJ; Sohng JK
    Biotechnol Appl Biochem; 2019 Jul; 66(4):484-493. PubMed ID: 26498482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable production of genistin from glycerol by constructing and optimizing Escherichia coli.
    Wang Z; Li X; Dai Y; Yin L; Azi F; Zhou J; Dong M; Xia X
    Metab Eng; 2022 Nov; 74():206-219. PubMed ID: 36336175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of catalytically active acetyl-S-malonate decarboxylase requires malonyl-coenzyme A:acyl carrier protein transacylase as auxiliary enzyme [corrected].
    Hoenke S; Dimroth P
    Eur J Biochem; 1999 Jan; 259(1-2):181-7. PubMed ID: 9914491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a Novel Metabolic Pathway for Improving Cellular Malonyl-CoA Levels in Escherichia coli.
    Moteallehi-Ardakani MH; Asad S; Marashi SA; Moghaddasi A; Zarparvar P
    Mol Biotechnol; 2023 Sep; 65(9):1508-1517. PubMed ID: 36658293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleocytoplasmic-localized acyltransferases catalyze the malonylation of 7-O-glycosidic (iso)flavones in Medicago truncatula.
    Yu XH; Chen MH; Liu CJ
    Plant J; 2008 Aug; 55(3):382-96. PubMed ID: 18419782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoflavonoid composition of a callus culture of the relict tree Maackia amurensis Rupr. et Maxim.
    Fedoreyev SA; Bulgakov VP; Grishchenko OV; Veselova MV; Krivoschekova OE; Kulesh NI; Denisenko VA; Tchernoded GK; Zhuravlev YN
    J Agric Food Chem; 2008 Aug; 56(16):7023-31. PubMed ID: 18671403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Malonyl-coenzyme A:isoflavone 7-O-glucoside-6"-O-malonyltransferase from roots of chick pea (Cicer arietinum L.).
    Koester J; Bussmann R; Barz W
    Arch Biochem Biophys; 1984 Nov; 234(2):513-21. PubMed ID: 6497385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species.
    Lim YJ; Lim B; Kim HY; Kwon SJ; Eom SH
    Enzyme Microb Technol; 2020 Jan; 132():109394. PubMed ID: 31731960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of malonylated flavonoid glycosides on the basis of malonyltransferase activity in the petals of Clitoria ternatea.
    Kogawa K; Kazuma K; Kato N; Noda N; Suzuki M
    J Plant Physiol; 2007 Jul; 164(7):886-94. PubMed ID: 16887235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of succinyl genistin and succinyl daidzin by Bacillus species.
    Park CU; Jeong MK; Park MH; Yeu J; Park MS; Kim MJ; Ahn SM; Chang PS; Lee J
    J Food Sci; 2010; 75(1):C128-33. PubMed ID: 20492143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli.
    Cheng Z; Jiang J; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Jan; 200():897-904. PubMed ID: 26606325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli.
    Shrestha A; Pandey RP; Pokhrel AR; Dhakal D; Chu LL; Sohng JK
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9691-9706. PubMed ID: 30178203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The conversion and deglycosylation of isoflavones and anthocyanins in black soymilk process.
    Hsiao YH; Hsieh JF
    Food Chem; 2018 Sep; 261():8-14. PubMed ID: 29739609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering.
    Zha W; Rubin-Pitel SB; Shao Z; Zhao H
    Metab Eng; 2009 May; 11(3):192-8. PubMed ID: 19558964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase.
    Zhang X; Agrawal A; San KY
    Biotechnol Prog; 2012; 28(1):60-5. PubMed ID: 22038854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.