BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 25189873)

  • 1. Nucleosome-positioning sequence repeats impact chromatin silencing in yeast minichromosomes.
    Chakraborty SA; Kazi AA; Khan TM; Grigoryev SA
    Genetics; 2014 Nov; 198(3):1015-29. PubMed ID: 25189873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single heterochromatin boundary element imposes position-independent antisilencing activity in Saccharomyces cerevisiae minichromosomes.
    Chakraborty SA; Simpson RT; Grigoryev SA
    PLoS One; 2011; 6(9):e24835. PubMed ID: 21949764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Yeast Minichromosome System Consisting of Highly Positioned Nucleosomes in Vivo.
    Fuse T; Yanagida A; Shimizu M
    Biol Pharm Bull; 2019 Feb; 42(2):289-294. PubMed ID: 30531092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers.
    Zou Y; Yu Q; Bi X
    Mol Cell Biol; 2006 Oct; 26(20):7806-19. PubMed ID: 16908533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome positioning, nucleosome spacing and the nucleosome code.
    Clark DJ
    J Biomol Struct Dyn; 2010 Jun; 27(6):781-93. PubMed ID: 20232933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telomeric repeats act as nucleosome-disfavouring sequences in vivo.
    Ichikawa Y; Morohashi N; Nishimura Y; Kurumizaka H; Shimizu M
    Nucleic Acids Res; 2014 Feb; 42(3):1541-52. PubMed ID: 24174540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin folding modulates nucleosome positioning in yeast minichromosomes.
    Thoma F; Zatchej M
    Cell; 1988 Dec; 55(6):945-53. PubMed ID: 3060264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of histone H3 nucleosome core surface mutations to chromatin structures, silencing and DNA repair.
    Fink M; Thompson JS; Thoma F
    PLoS One; 2011; 6(10):e26210. PubMed ID: 22053185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.
    Prescott ET; Safi A; Rusche LN
    Genetics; 2011 Jul; 188(3):535-48. PubMed ID: 21546544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-dependent nucleosome formation in trinucleotide repeats evaluated by in vivo chemical mapping.
    Katsumata K; Ichikawa Y; Fuse T; Kurumizaka H; Yanagida A; Urano T; Kato H; Shimizu M
    Biochem Biophys Res Commun; 2021 Jun; 556():179-184. PubMed ID: 33839413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial nucleosome positioning sequences tested in yeast minichromosomes: a strong rotational setting is not sufficient to position nucleosomes in vivo.
    Tanaka S; Zatchej M; Thoma F
    EMBO J; 1992 Mar; 11(3):1187-93. PubMed ID: 1547779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterochromatin organization of a natural yeast telomere. Changes of nucleosome distribution driven by the absence of Sir3p.
    Vega-Palas MA; Venditti S; Di Mauro E
    J Biol Chem; 1998 Apr; 273(16):9388-92. PubMed ID: 9545262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae.
    Wong B; Chen S; Kwon JA; Rich A
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2229-34. PubMed ID: 17284586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene.
    Lascaris RF; Groot E; Hoen PB; Mager WH; Planta RJ
    Nucleic Acids Res; 2000 Mar; 28(6):1390-6. PubMed ID: 10684934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DNA-encoded nucleosome organization of a eukaryotic genome.
    Kaplan N; Moore IK; Fondufe-Mittendorf Y; Gossett AJ; Tillo D; Field Y; LeProust EM; Hughes TR; Lieb JD; Widom J; Segal E
    Nature; 2009 Mar; 458(7236):362-6. PubMed ID: 19092803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing.
    Lai B; Gao W; Cui K; Xie W; Tang Q; Jin W; Hu G; Ni B; Zhao K
    Nature; 2018 Oct; 562(7726):281-285. PubMed ID: 30258225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosome Positioning Regulates the Establishment, Stability, and Inheritance of Heterochromatin in
    Saxton DS; Rine J
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27493-27501. PubMed ID: 33077593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning.
    Guillemette B; Bataille AR; Gévry N; Adam M; Blanchette M; Robert F; Gaudreau L
    PLoS Biol; 2005 Dec; 3(12):e384. PubMed ID: 16248679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide mapping of nucleosomes in yeast.
    Rando OJ
    Methods Enzymol; 2010; 470():105-18. PubMed ID: 20946808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.