BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25190089)

  • 1. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform.
    Chung J; Kang JS; Jurng JS; Jung JH; Kim BC
    Biosens Bioelectron; 2015 May; 67():303-8. PubMed ID: 25190089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.
    Shangguan J; Li Y; He D; He X; Wang K; Zou Z; Shi H
    Analyst; 2015 Jul; 140(13):4489-97. PubMed ID: 25963028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria.
    Kim YS; Chung J; Song MY; Jurng J; Kim BC
    Biosens Bioelectron; 2014 Apr; 54():195-8. PubMed ID: 24280049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers.
    Lee HJ; Kim BC; Kim KW; Kim YK; Kim J; Oh MK
    Biosens Bioelectron; 2009 Aug; 24(12):3550-5. PubMed ID: 19505816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells.
    Herr JK; Smith JE; Medley CD; Shangguan D; Tan W
    Anal Chem; 2006 May; 78(9):2918-24. PubMed ID: 16642976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time and label-free analyte detection in a flow-through mode using immobilized fluorescent aptamer/quantum dots molecular switches.
    Bogomolova A; Aldissi M
    Biosens Bioelectron; 2015 Apr; 66():290-6. PubMed ID: 25437366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms.
    Choi J; Kang M; Jung JH
    Sci Rep; 2015 Nov; 5():15983. PubMed ID: 26522006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells.
    Smith JE; Medley CD; Tang Z; Shangguan D; Lofton C; Tan W
    Anal Chem; 2007 Apr; 79(8):3075-82. PubMed ID: 17348633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles.
    Alsager OA; Kumar S; Willmott GR; McNatty KP; Hodgkiss JM
    Biosens Bioelectron; 2014 Jul; 57():262-8. PubMed ID: 24594593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical aptasensors for microbial and viral pathogens.
    Labib M; Berezovski MV
    Adv Biochem Eng Biotechnol; 2014; 140():155-81. PubMed ID: 23917779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-receptor sandwich supramolecule sensing method for the determination of ATP based on uranyl-salophen complex and aptamer.
    Zhao M; Liao L; Wu M; Lin Y; Xiao X; Nie C
    Biosens Bioelectron; 2012 Apr; 34(1):106-11. PubMed ID: 22336438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Aptamer-Based Biosensor for Rapid Detection of Pathogenic
    Zhao YW; Wang HX; Jia GC; Li Z
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and ultrasensitive Salmonella Typhimurium quantification using positive dielectrophoresis driven on-line enrichment and fluorescent nanoparticleslabel.
    He X; Hu C; Guo Q; Wang K; Li Y; Shangguan J
    Biosens Bioelectron; 2013 Apr; 42():460-6. PubMed ID: 23238319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-aptamer conjugates for cancer cell targeting and detection.
    Estévez MC; Huang YF; Kang H; O'Donoghue MB; Bamrungsap S; Yan J; Chen X; Tan W
    Methods Mol Biol; 2010; 624():235-48. PubMed ID: 20217600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-induced conjunction of split aptamer fragments and assembly with a water-soluble conjugated polymer for improved protein detection.
    Liu X; Shi L; Hua X; Huang Y; Su S; Fan Q; Wang L; Huang W
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3406-12. PubMed ID: 24512085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidics-based DNA structure-competitive aptasensor for rapid on-site detection of lead(II) in an aquatic environment.
    Long F; Zhu A; Wang H
    Anal Chim Acta; 2014 Nov; 849():43-9. PubMed ID: 25300216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications.
    Si Y; Grazon C; Clavier G; Rieger J; Audibert JF; Sclavi B; Méallet-Renault R
    Biosens Bioelectron; 2016 Jan; 75():320-7. PubMed ID: 26334591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual labeled Ag@SiO₂ core-shell nanoparticle based optical immunosensor for sensitive detection of E. coli.
    Krishnan S; Chinnasamy T; Veerappan S; Senthilkumar K; Kannaiyan D
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():337-42. PubMed ID: 25491837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aptamer-based fluorescent biosensor for potassium ion detection using a pyrene-labeled molecular beacon.
    Shi C; Gu H; Ma C
    Anal Biochem; 2010 May; 400(1):99-102. PubMed ID: 20056100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter.
    Cai L; Chen ZZ; Dong XM; Tang HW; Pang DW
    Biosens Bioelectron; 2011 Nov; 29(1):46-52. PubMed ID: 21903375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.