These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25190199)

  • 1. Subtle Mitsunobu couplings under super-heating: the role of high-throughput continuous flow and microwave strategies.
    Manvar A; Shah A
    Org Biomol Chem; 2014 Nov; 12(41):8112-24. PubMed ID: 25190199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconsidering glycosylations at high temperature: precise microwave heating.
    Larsen K; Worm-Leonhard K; Olsen P; Hoel A; Jensen KJ
    Org Biomol Chem; 2005 Nov; 3(21):3966-70. PubMed ID: 16240015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic alkenyl boronic half acid synthesis and applications.
    McNulty L; Kohlbacher K; Borin K; Dodd B; Bishop J; Fuller L; Wright Z
    J Org Chem; 2010 Sep; 75(17):6001-4. PubMed ID: 20701318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-phase synthesis of difficult peptide sequences at elevated temperatures: a critical comparison of microwave and conventional heating technologies.
    Bacsa B; Horváti K; Bõsze S; Andreae F; Kappe CO
    J Org Chem; 2008 Oct; 73(19):7532-42. PubMed ID: 18729524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the energy efficiency of microwave-assisted organic reactions.
    Razzaq T; Kappe CO
    ChemSusChem; 2008; 1(1-2):123-32. PubMed ID: 18605675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave-assisted benzyl-transfer reactions of commercially available 2-benzyloxy-1-methylpyridinium triflate.
    Wang TW; Intaranukulkit T; Rosana MR; Slegeris R; Simon J; Dudley GB
    Org Biomol Chem; 2012 Jan; 10(2):248-50. PubMed ID: 22025036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Borrowing hydrogen methodology for amine synthesis under solvent-free microwave conditions.
    Watson AJ; Maxwell AC; Williams JM
    J Org Chem; 2011 Apr; 76(7):2328-31. PubMed ID: 21341813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwaves in organic synthesis. Thermal and non-thermal microwave effects.
    de la Hoz A; Díaz-Ortiz A; Moreno A
    Chem Soc Rev; 2005 Feb; 34(2):164-78. PubMed ID: 15672180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave-assisted solid-phase peptide synthesis at 60 degrees C: alternative conditions with low enantiomerization.
    Loffredo C; Assunção NA; Gerhardt J; Miranda MT
    J Pept Sci; 2009 Dec; 15(12):808-17. PubMed ID: 19827081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of microwave heating on the migration of substances from melamine formaldehyde tableware.
    Poovarodom N; Junsrisuriyawong K; Sangmahamad R; Tangmongkollert P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(9):1616-24. PubMed ID: 25068920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses.
    Horikoshi S; Serpone N
    Chem Rec; 2019 Jan; 19(1):118-139. PubMed ID: 30277645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient palladium(II) catalysis under air. Base-free oxidative heck reactions at room temperature or with microwave heating.
    Lindh J; Enquist PA; Pilotti A; Nilsson P; Larhed M
    J Org Chem; 2007 Oct; 72(21):7957-62. PubMed ID: 17887706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward rapid, "green", predictable microwave-assisted synthesis.
    Roberts BA; Strauss CR
    Acc Chem Res; 2005 Aug; 38(8):653-61. PubMed ID: 16104688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides.
    Obermayer D; Glasnov TN; Kappe CO
    J Org Chem; 2011 Aug; 76(16):6657-69. PubMed ID: 21721531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic dehydrative etherification and chlorination of benzyl alcohols in ionic liquids.
    Kalviri HA; Petten CF; Kerton FM
    Chem Commun (Camb); 2009 Sep; (34):5171-3. PubMed ID: 20448983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations.
    Baxendale IR; Griffiths-Jones CM; Ley SV; Tranmer GK
    Chemistry; 2006 May; 12(16):4407-16. PubMed ID: 16586523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave heating in solid-phase peptide synthesis.
    Pedersen SL; Tofteng AP; Malik L; Jensen KJ
    Chem Soc Rev; 2012 Mar; 41(5):1826-44. PubMed ID: 22012213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry.
    Wang H; Tu ZC; Liu GX; Liu CM; Huang XQ; Xiao H
    Food Chem; 2013 Nov; 141(2):985-91. PubMed ID: 23790877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave and continuous flow technologies in drug discovery.
    Sadler S; Moeller AR; Jones GB
    Expert Opin Drug Discov; 2012 Dec; 7(12):1107-28. PubMed ID: 23004354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled microwave heating in modern organic synthesis.
    Kappe CO
    Angew Chem Int Ed Engl; 2004 Nov; 43(46):6250-84. PubMed ID: 15558676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.