These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 25190371)

  • 21. Nonlinear saturation of the thermoacoustic instability.
    Karpov S; Prosperetti A
    J Acoust Soc Am; 2000 Jun; 107(6):3130-47. PubMed ID: 10875359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stationary velocity and pressure gradients in a thermoacoustic stack.
    Waxler R
    J Acoust Soc Am; 2001 Jun; 109(6):2739-50. PubMed ID: 11425116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Second and third harmonic waves excited by focused Gaussian beams.
    Levy U; Silberberg Y
    Opt Express; 2015 Oct; 23(21):27795-805. PubMed ID: 26480441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of a stack on Rayleigh streaming cells investigated by laser Doppler velocimetry for application to thermoacoustic devices (L).
    Moreau S; Bailliet H; Valière JC
    J Acoust Soc Am; 2009 Jun; 125(6):3514-7. PubMed ID: 19507931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic streaming in closed thermoacoustic devices.
    Bailliet H; Gusev V; Raspet R; Hiller RA
    J Acoust Soc Am; 2001 Oct; 110(4):1808-21. PubMed ID: 11681362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitigating self-excited thermoacoustic oscillations in a liquid fuel combustor using dual perforated plates.
    Zhou H; Liu Z; Tao C; Zhou M
    J Acoust Soc Am; 2020 Sep; 148(3):1756. PubMed ID: 33003885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frequency response of nonlinear oscillations of air column in a tube with an array of Helmholtz resonators.
    Sugimoto N; Masuda M; Hashiguchi T
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1772-84. PubMed ID: 14587579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.
    Morii J; Biwa T; Yazaki T
    Rev Sci Instrum; 2014 Sep; 85(9):094902. PubMed ID: 25273759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experiments of high-amplitude and shock-free oscillations of air column in a tube with array of Helmholtz resonators.
    Masuda M; Sugimoto N
    J Acoust Soc Am; 2005 Jul; 118(1):113-23. PubMed ID: 16119335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On-off intermittency in coupled chaotic thermoacoustic oscillations.
    Delage R; Takayama Y; Biwa T
    Chaos; 2017 Apr; 27(4):043111. PubMed ID: 28456176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on heat transfer law of moving temperature variable gas in thermoacoustic plate stack.
    Wang J; Liu X
    Sci Rep; 2024 Apr; 14(1):9486. PubMed ID: 38664526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Biological effects of interacting shock waves. A modeling study of the effects of interacting shock waves using erythrocyte hemolysis].
    Benes J; Stuka C; Fortová H; Chmel J; Sunka P; Klener P
    Sb Lek; 1997; 98(4):277-82. PubMed ID: 9648603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic streaming related to minor loss phenomenon in differentially heated elements of thermoacoustic devices.
    Mironov M; Gusev V; Auregan Y; Lotton P; Bruneau M; Piatakov P
    J Acoust Soc Am; 2002 Aug; 112(2):441-5. PubMed ID: 12186024
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Suppression of harmonics in a model of thermoacoustic refrigerator based on an acoustic metamaterial.
    Fan L; Ding J; Zhu JJ; Chen Z; Zhang SY; Zhang H; Li XJ
    J Acoust Soc Am; 2015 Oct; 138(4):EL435-40. PubMed ID: 26520357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental observation of cumulative second-harmonic generation of lamb waves propagating in long bones.
    Zhang Z; Liu D; Deng M; Ta D; Wang W
    Ultrasound Med Biol; 2014 Jul; 40(7):1660-70. PubMed ID: 24726796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.
    Johnston K; Tapia-Siles C; Gerold B; Postema M; Cochran S; Cuschieri A; Prentice P
    Ultrasonics; 2014 Dec; 54(8):2151-8. PubMed ID: 25015000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational method for a thermoacoustic boundary layer in a gas-filled tube.
    Sugimoto N; Shimizu D
    J Acoust Soc Am; 2024 Jan; 155(1):98-113. PubMed ID: 38174969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing thermoacoustic regenerators for maximum amplification of acoustic power.
    Holzinger T; Emmert T; Polifke W
    J Acoust Soc Am; 2014 Nov; 136(5):2432-40. PubMed ID: 25373945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic waves in a structure containing two piezoelectric plates separated by an air (vacuum) gap.
    Borodina IA; Zaitsev BD; Kuznetsova IE; Teplykh AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2677-81. PubMed ID: 24297033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.