These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25190376)

  • 1. Optimal shaping of acoustic resonators for the generation of high-amplitude standing waves.
    Červenka M; Šoltés M; Bednařík M
    J Acoust Soc Am; 2014 Sep; 136(3):1003. PubMed ID: 25190376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of shock-free pressure waves in shaped resonators by boundary driving.
    Luo C; Huang XY; Nguyen NT
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2515-21. PubMed ID: 17550150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear standing waves in 2-D acoustic resonators.
    Cervenka M; Bednarik M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e773-6. PubMed ID: 16780910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
    Antao DS; Farouk B
    J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear interactions in elastic resonators.
    Bednarik M; Cervenka M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e783-5. PubMed ID: 16808944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of resonator dimensions on nonlinear standing waves.
    Luo C; Huang XY; Nguyen NT
    J Acoust Soc Am; 2005 Jan; 117(1):96-103. PubMed ID: 15704402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy losses in an acoustical resonator.
    Ilinskii YA; Lipkens B; Zabolotskaya EA
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1859-70. PubMed ID: 11386541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise control in enclosures: modeling and experiments with T-shaped acoustic resonators.
    Li D; Cheng L; Yu GH; Vipperman JS
    J Acoust Soc Am; 2007 Nov; 122(5):2615-25. PubMed ID: 18189553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical model for nonlinear standing waves and weak shocks in thermoviscous fluids.
    Vanhille C; Campos-Pozuelo C
    J Acoust Soc Am; 2001 Jun; 109(6):2660-7. PubMed ID: 11425108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment.
    Pensala T; Ylilammi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1731-44. PubMed ID: 19686989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.
    Dellavale D; Urteaga R; Bonetto FJ
    J Acoust Soc Am; 2010 Jan; 127(1):186-97. PubMed ID: 20058963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical and experimental analysis of strongly nonlinear standing acoustic waves in axisymmetric cavities.
    Vanhille C; Campos-Pozuelo C
    Ultrasonics; 2005 Aug; 43(8):652-60. PubMed ID: 15982470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite amplitude standing waves in resonators terminated by a general impedance.
    Bednarik M; Cervenka M
    J Acoust Soc Am; 2015 Mar; 137(3):1257-64. PubMed ID: 25786939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparisons of the acoustic radiation force of ultrasonic standing waves in half-wavelength and quarter-wavelength micro-resonators of cylindrical geometry.
    Yang IH; Kim N
    Ultrasonics; 2024 Mar; 138():107267. PubMed ID: 38367402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of tube geometry on the performance of standing-wave acoustic resonators.
    Feng H; Peng Y; Zhang X; Li X
    J Acoust Soc Am; 2018 Sep; 144(3):1443. PubMed ID: 30424619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.
    Koyama D; Kotera H; Kitazawa N; Yoshida K; Nakamura K; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):737-43. PubMed ID: 21507751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators.
    Hill M
    J Acoust Soc Am; 2003 Nov; 114(5):2654-61. PubMed ID: 14650002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear frequency shifts in acoustical resonators with varying cross sections.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2009 Mar; 125(3):1310-9. PubMed ID: 19275288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustically driven oscillatory flow fields in a cylindrical resonator at resonance.
    Farouk B; Antao DS; Hasan N
    J Acoust Soc Am; 2019 May; 145(5):2932. PubMed ID: 31153354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.