These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 25190796)

  • 1. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis.
    Denoeud F; Carretero-Paulet L; Dereeper A; Droc G; Guyot R; Pietrella M; Zheng C; Alberti A; Anthony F; Aprea G; Aury JM; Bento P; Bernard M; Bocs S; Campa C; Cenci A; Combes MC; Crouzillat D; Da Silva C; Daddiego L; De Bellis F; Dussert S; Garsmeur O; Gayraud T; Guignon V; Jahn K; Jamilloux V; Joët T; Labadie K; Lan T; Leclercq J; Lepelley M; Leroy T; Li LT; Librado P; Lopez L; Muñoz A; Noel B; Pallavicini A; Perrotta G; Poncet V; Pot D; Priyono ; Rigoreau M; Rouard M; Rozas J; Tranchant-Dubreuil C; VanBuren R; Zhang Q; Andrade AC; Argout X; Bertrand B; de Kochko A; Graziosi G; Henry RJ; Jayarama ; Ming R; Nagai C; Rounsley S; Sankoff D; Giuliano G; Albert VA; Wincker P; Lashermes P
    Science; 2014 Sep; 345(6201):1181-4. PubMed ID: 25190796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Botany. A wake-up call with coffee.
    Zamir D
    Science; 2014 Sep; 345(6201):1124. PubMed ID: 25190782
    [No Abstract]   [Full Text] [Related]  

  • 3. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta).
    Perrois C; Strickler SR; Mathieu G; Lepelley M; Bedon L; Michaux S; Husson J; Mueller L; Privat I
    Planta; 2015 Jan; 241(1):179-91. PubMed ID: 25249475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants.
    Xu Z; Pu X; Gao R; Demurtas OC; Fleck SJ; Richter M; He C; Ji A; Sun W; Kong J; Hu K; Ren F; Song J; Wang Z; Gao T; Xiong C; Yu H; Xin T; Albert VA; Giuliano G; Chen S; Song J
    BMC Biol; 2020 Jun; 18(1):63. PubMed ID: 32552824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago.
    Raharimalala N; Rombauts S; McCarthy A; Garavito A; Orozco-Arias S; Bellanger L; Morales-Correa AY; Froger S; Michaux S; Berry V; Metairon S; Fournier C; Lepelley M; Mueller L; Couturon E; Hamon P; Rakotomalala JJ; Descombes P; Guyot R; Crouzillat D
    Sci Rep; 2021 Apr; 11(1):8119. PubMed ID: 33854089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of a novel intronic microRNA in cross regulation of N-methyltransferase genes involved in caffeine biosynthesis in Coffea canephora.
    Mohanan S; Gowda K; Kandukuri SV; Chandrashekar A
    Gene; 2013 Apr; 519(1):107-12. PubMed ID: 23376454
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Zhou MZ; Yan CY; Zeng Z; Luo L; Zeng W; Huang YH
    J Agric Food Chem; 2020 Dec; 68(52):15359-15372. PubMed ID: 33206517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of promoter for N-methyltransferase gene associated with caffeine biosynthesis in Coffea canephora.
    Satyanarayana KV; Kumar V; Chandrashekar A; Ravishankar GA
    J Biotechnol; 2005 Sep; 119(1):20-5. PubMed ID: 16043251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants.
    Uefuji H; Ogita S; Yamaguchi Y; Koizumi N; Sano H
    Plant Physiol; 2003 May; 132(1):372-80. PubMed ID: 12746542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis.
    Xia EH; Zhang HB; Sheng J; Li K; Zhang QJ; Kim C; Zhang Y; Liu Y; Zhu T; Li W; Huang H; Tong Y; Nan H; Shi C; Shi C; Jiang JJ; Mao SY; Jiao JY; Zhang D; Zhao Y; Zhao YJ; Zhang LP; Liu YL; Liu BY; Yu Y; Shao SF; Ni DJ; Eichler EE; Gao LZ
    Mol Plant; 2017 Jun; 10(6):866-877. PubMed ID: 28473262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of N-methyltransferase genes.
    Ashihara H; Zheng XQ; Katahira R; Morimoto M; Ogita S; Sano H
    Phytochemistry; 2006 May; 67(9):882-6. PubMed ID: 16624354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea).
    Yu Q; Guyot R; de Kochko A; Byers A; Navajas-Pérez R; Langston BJ; Dubreuil-Tranchant C; Paterson AH; Poncet V; Nagai C; Ming R
    Plant J; 2011 Jul; 67(2):305-17. PubMed ID: 21457367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content.
    Hamon P; Grover CE; Davis AP; Rakotomalala JJ; Raharimalala NE; Albert VA; Sreenath HL; Stoffelen P; Mitchell SE; Couturon E; Hamon S; de Kochko A; Crouzillat D; Rigoreau M; Sumirat U; Akaffou S; Guyot R
    Mol Phylogenet Evol; 2017 Apr; 109():351-361. PubMed ID: 28212875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeine synthase and related methyltransferases in plants.
    Misako K; Kouichi M
    Front Biosci; 2004 May; 9():1833-42. PubMed ID: 14977590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades.
    Guyot R; Lefebvre-Pautigny F; Tranchant-Dubreuil C; Rigoreau M; Hamon P; Leroy T; Hamon S; Poncet V; Crouzillat D; de Kochko A
    BMC Genomics; 2012 Mar; 13():103. PubMed ID: 22433423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of caffeine underlying the diversity of motif B' methyltransferase.
    Nakayama F; Mizuno K; Kato M
    Nat Prod Commun; 2015 May; 10(5):799-801. PubMed ID: 26058161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering.
    Ashihara H; Sano H; Crozier A
    Phytochemistry; 2008 Feb; 69(4):841-56. PubMed ID: 18068204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution, biosynthesis and catabolism of methylxanthines in plants.
    Ashihara H; Kato M; Crozier A
    Handb Exp Pharmacol; 2011; (200):11-31. PubMed ID: 20859792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties.
    Ogita S; Uefuji H; Morimoto M; Sano H
    Plant Mol Biol; 2004 Apr; 54(6):931-41. PubMed ID: 15604660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content.
    Tran HTM; Ramaraj T; Furtado A; Lee LS; Henry RJ
    Plant Biotechnol J; 2018 Oct; 16(10):1756-1766. PubMed ID: 29509991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.