These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25191264)

  • 1. In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography.
    Xie Y; Martini N; Hassler C; Kirch RD; Stieglitz T; Seifert A; Hofmann UG
    Front Neuroeng; 2014; 7():34. PubMed ID: 25191264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term
    Dryg I; Xie Y; Bergmann M; Urban G; Shain W; Hofmann UG
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33657543
    [No Abstract]   [Full Text] [Related]  

  • 3. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.
    Malaga KA; Schroeder KE; Patel PR; Irwin ZT; Thompson DE; Nicole Bentley J; Lempka SF; Chestek CA; Patil PG
    J Neural Eng; 2016 Feb; 13(1):016010. PubMed ID: 26655972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes.
    Otte E; Vlachos A; Asplund M
    Cell Tissue Res; 2022 Mar; 387(3):461-477. PubMed ID: 35029757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic in vivo stability assessment of carbon fiber microelectrode arrays.
    Patel PR; Zhang H; Robbins MT; Nofar JB; Marshall SP; Kobylarek MJ; Kozai TD; Kotov NA; Chestek CA
    J Neural Eng; 2016 Dec; 13(6):066002. PubMed ID: 27705958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between intracortical electrode design and chronic recording function.
    Karumbaiah L; Saxena T; Carlson D; Patil K; Patkar R; Gaupp EA; Betancur M; Stanley GB; Carin L; Bellamkonda RV
    Biomaterials; 2013 Nov; 34(33):8061-74. PubMed ID: 23891081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of human brain tumor tissue by near-infrared laser coherence tomography.
    Böhringer HJ; Lankenau E; Stellmacher F; Reusche E; Hüttmann G; Giese A
    Acta Neurochir (Wien); 2009 May; 151(5):507-17; discussion 517. PubMed ID: 19343270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple implantation method for flexible, multisite microelectrodes into rat brains.
    Richter A; Xie Y; Schumacher A; Löffler S; Kirch RD; Al-Hasani J; Rapoport DH; Kruse C; Moser A; Tronnier V; Danner S; Hofmann UG
    Front Neuroeng; 2013; 6():6. PubMed ID: 23898266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient.
    Szymanski LJ; Kellis S; Liu CY; Jones KT; Andersen RA; Commins D; Lee B; McCreery DB; Miller CA
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34314384
    [No Abstract]   [Full Text] [Related]  

  • 11. Inhibition of Na
    Dubaniewicz M; Eles JR; Lam S; Song S; Cambi F; Sun D; Wellman SM; Kozai TDY
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33621208
    [No Abstract]   [Full Text] [Related]  

  • 12. Time-domain and spectral-domain optical coherence tomography in the analysis of brain tumor tissue.
    Böhringer HJ; Boller D; Leppert J; Knopp U; Lankenau E; Reusche E; Hüttmann G; Giese A
    Lasers Surg Med; 2006 Jul; 38(6):588-97. PubMed ID: 16736504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation.
    Savya SP; Li F; Lam S; Wellman SM; Stieger KC; Chen K; Eles JR; Kozai TDY
    Biomaterials; 2022 Oct; 289():121784. PubMed ID: 36103781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time subglottic stenosis imaging using optical coherence tomography in the rabbit.
    Lin JL; Yau AY; Boyd J; Hamamoto A; Su E; Tracy L; Heidari AE; Wang AH; Ahuja G; Chen Z; Wong BJ
    JAMA Otolaryngol Head Neck Surg; 2013 May; 139(5):502-9. PubMed ID: 23681033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation.
    Wellman SM; Kozai TDY
    Biomaterials; 2018 May; 164():121-133. PubMed ID: 29501892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-based photoacoustic remote sensing microscopy and spectral-domain optical coherence tomography with a dual-function 1050-nm interrogation source.
    Martell M; Haven NJ; Zemp R
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34164968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
    Barrese JC; Aceros J; Donoghue JP
    J Neural Eng; 2016 Apr; 13(2):026003. PubMed ID: 26824680
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.