These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25191928)

  • 1. Impact of compost on metals phytostabilization potential of two halophytes species.
    Eissa MA
    Int J Phytoremediation; 2015; 17(7):662-8. PubMed ID: 25191928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil.
    Kachout SS; Mansoura AB; Mechergui R; Leclerc JC; Rejeb MN; Ouerghi Z
    J Sci Food Agric; 2012 Jan; 92(2):336-42. PubMed ID: 21935956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of spent mushroom compost to enhance the ability of Atriplex halimus to phytoremediate contaminated mine soils.
    Frutos I; García-Delgado C; Cala V; Gárate A; Eymar E
    Environ Technol; 2017 May; 38(9):1075-1084. PubMed ID: 27494563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn.
    Amer N; Al Chami Z; Al Bitar L; Mondelli D; Dumontet S
    Int J Phytoremediation; 2013; 15(5):498-512. PubMed ID: 23488175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halophytes--an emerging trend in phytoremediation.
    Manousaki E; Kalogerakis N
    Int J Phytoremediation; 2011; 13(10):959-69. PubMed ID: 21972564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of mine tailings with Atriplex halimus and organic/inorganic amendments: A five-year field case study.
    Acosta JA; Abbaspour A; Martínez GR; Martínez-Martínez S; Zornoza R; Gabarrón M; Faz A
    Chemosphere; 2018 Aug; 204():71-78. PubMed ID: 29653324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field.
    Gil-Loaiza J; White SA; Root RA; Solís-Dominguez FA; Hammond CM; Chorover J; Maier RM
    Sci Total Environ; 2016 Sep; 565():451-461. PubMed ID: 27183459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composted sewage sludge utilization in phytostabilization of heavy metals contaminated soils.
    Nagy A; Magyar T; Kiss NÉ; Tamás J
    Int J Phytoremediation; 2023; 25(11):1510-1523. PubMed ID: 36734108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc accumulation in Atriplex lentiformis is driven by plant genes and the soil microbiome.
    Kushwaha P; Tran A; Quintero D; Song M; Yu Q; Yu R; Downes M; Evans RM; Babst-Kostecka A; Schroeder JI; Maier RM
    Sci Total Environ; 2023 Nov; 899():165667. PubMed ID: 37478925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving quality of metal-contaminated soils by some halophyte and non-halophyte forage plants.
    Ding Z; Alharbi S; Almaroai YA; Eissa MA
    Sci Total Environ; 2021 Apr; 764():142885. PubMed ID: 33757255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils.
    Tauqeer HM; Ur-Rahman M; Hussain S; Abbas F; Iqbal M
    Ecotoxicol Environ Saf; 2019 May; 173():273-284. PubMed ID: 30776560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytostabilization of trace elements and
    Castillo B; Acuña E; Sánchez A; Cornejo P; Salazar O; Tapia Y
    Environ Monit Assess; 2023 Feb; 195(3):354. PubMed ID: 36729333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils.
    Idaszkin YL; Lancelotti JL; Pollicelli MP; Marcovecchio JE; Bouza PJ
    Mar Pollut Bull; 2017 May; 118(1-2):297-306. PubMed ID: 28291544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Bioaccumulation of heavy metals by the dominant plants growing in Huayuan manganese and lead/zinc mineland, Xiangxi].
    Yang SX; Tian QJ; Liang SC; Zhou YY; Zou HC
    Huan Jing Ke Xue; 2012 Jun; 33(6):2038-45. PubMed ID: 22946193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions.
    Clemente R; Walker DJ; Pardo T; Martínez-Fernández D; Bernal MP
    J Hazard Mater; 2012 Jul; 223-224():63-71. PubMed ID: 22595543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?
    Lutts S; Lefèvre I
    Ann Bot; 2015 Feb; 115(3):509-28. PubMed ID: 25672360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sugarcane vinasse and EDTA on cadmium phytoextraction by two saltbush plants.
    Eissa MA
    Environ Sci Pollut Res Int; 2016 May; 23(10):10247-54. PubMed ID: 26884237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salinity-induced alterations in plant growth, antioxidant enzyme activities, and lead transportation and accumulation in Suaeda salsa: implications for phytoremediation.
    Wang F; Song N
    Ecotoxicology; 2019 Jul; 28(5):520-527. PubMed ID: 31119593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.