BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1422 related articles for article (PubMed ID: 25191990)

  • 1. Efficient sorption of Cu(2+) by composite chelating sorbents based on potato starch-graft-polyamidoxime embedded in chitosan beads.
    Dragan ES; Apopei Loghin DF; Cocarta AI
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16577-92. PubMed ID: 25191990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu
    Dragan ES; Loghin DFA
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1872-1883. PubMed ID: 30290252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of novel composites based on chitosan and clinoptilolite with enhanced adsorption properties for Cu2+.
    Dragan ES; Dinu MV; Timpu D
    Bioresour Technol; 2010 Jan; 101(2):812-7. PubMed ID: 19748266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and thermodynamics of Cu(II) biosorption on to a novel magnetic chitosan composite bead.
    Chen Y; Hu J; Wang J
    Environ Technol; 2012; 33(19-21):2345-51. PubMed ID: 23393976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption characteristics of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents.
    Humelnicu D; Dinu MV; Drăgan ES
    J Hazard Mater; 2011 Jan; 185(1):447-55. PubMed ID: 20943312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II).
    Gandhi MR; Meenakshi S
    Int J Biol Macromol; 2012 Apr; 50(3):650-7. PubMed ID: 22281115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superadsorbents for Strontium and Cesium Removal Enriched in Amidoxime by a Homo-IPN Strategy Connected with Porous Silica Texture.
    Dragan ES; Humelnicu D; Ignat M; Varganici CD
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44622-44638. PubMed ID: 32935537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of hybrid biosorbent based on 1,2-cyclohexylenedinitrilotetraacetic acid modified crosslinked chitosan and organo-functionalized calcium alginate for adsorptive removal of Cu(II).
    Shehzad H; Farooqi ZH; Ahmed E; Sharif A; Razzaq S; Mirza FN; Irfan A; Begum R
    Int J Biol Macromol; 2022 Jun; 209(Pt A):132-143. PubMed ID: 35390398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis.
    Jayakumar R; Rajasimman M; Karthikeyan C
    Ecotoxicol Environ Saf; 2015 Nov; 121():199-210. PubMed ID: 25866206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite.
    Rajiv Gandhi M; Kousalya GN; Meenakshi S
    Int J Biol Macromol; 2011 Jan; 48(1):119-24. PubMed ID: 20970443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave synthesis, characterization, and zinc uptake studies of starch-graft-poly(ethylacrylate).
    Singh V; Maurya S
    Int J Biol Macromol; 2010 Oct; 47(3):348-55. PubMed ID: 20685360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents.
    Elwakeel KZ; Guibal E
    Carbohydr Polym; 2015 Dec; 134():190-204. PubMed ID: 26428116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites.
    Wang X; Zheng Y; Wang A
    J Hazard Mater; 2009 Sep; 168(2-3):970-7. PubMed ID: 19342172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads.
    Wan Ngah WS; Kamari A; Koay YJ
    Int J Biol Macromol; 2004 Jun; 34(3):155-61. PubMed ID: 15225987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal.
    Jiang W; Chen X; Pan B; Zhang Q; Teng L; Chen Y; Liu L
    J Hazard Mater; 2014 Jul; 276():295-301. PubMed ID: 24910907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative studies on the removal of heavy metals ions onto cross linked chitosan-g-acrylonitrile copolymer.
    Shankar P; Gomathi T; Vijayalakshmi K; Sudha PN
    Int J Biol Macromol; 2014 Jun; 67():180-8. PubMed ID: 24680901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Cu(II) from aqueous solutions using chemically modified chitosan.
    Kannamba B; Reddy KL; AppaRao BV
    J Hazard Mater; 2010 Mar; 175(1-3):939-48. PubMed ID: 19942344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enriched fluoride sorption using alumina/chitosan composite.
    Viswanathan N; Meenakshi S
    J Hazard Mater; 2010 Jun; 178(1-3):226-32. PubMed ID: 20144851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of copper(II) ions by a chitosan-oxalate complex biosorbent.
    Mi FL; Wu SJ; Lin FM
    Int J Biol Macromol; 2015 Jan; 72():136-44. PubMed ID: 25138540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin.
    Abou El-Reash YG; Otto M; Kenawy IM; Ouf AM
    Int J Biol Macromol; 2011 Nov; 49(4):513-22. PubMed ID: 21684304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 72.