These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25192111)

  • 1. Direct view at excess electrons in TiO2 rutile and anatase.
    Setvin M; Franchini C; Hao X; Schmid M; Janotti A; Kaltak M; Van de Walle CG; Kresse G; Diebold U
    Phys Rev Lett; 2014 Aug; 113(8):086402. PubMed ID: 25192111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
    Spreafico C; VandeVondele J
    Phys Chem Chem Phys; 2014 Dec; 16(47):26144-52. PubMed ID: 25360624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2.
    Zhang J; Zhou P; Liu J; Yu J
    Phys Chem Chem Phys; 2014 Oct; 16(38):20382-6. PubMed ID: 25144471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge trapping at the step edges of TiO(2) anatase (101).
    Setvin M; Hao X; Daniel B; Pavelec J; Novotny Z; Parkinson GS; Schmid M; Kresse G; Franchini C; Diebold U
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4714-6. PubMed ID: 24677419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy.
    Chiesa M; Paganini MC; Livraghi S; Giamello E
    Phys Chem Chem Phys; 2013 Jun; 15(24):9435-47. PubMed ID: 23695705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iso-valent doping of reducible oxides: a comparison of rutile (110) and anatase (101) TiO
    Maleki F; Pacchioni G
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34521076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-Principles Modeling of Polaron Formation in TiO
    Elmaslmane AR; Watkins MB; McKenna KP
    J Chem Theory Comput; 2018 Jul; 14(7):3740-3751. PubMed ID: 29874462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstitial oxygen.
    Kamisaka H; Hitosugi T; Suenaga T; Hasegawa T; Yamashita K
    J Chem Phys; 2009 Jul; 131(3):034702. PubMed ID: 19624216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries.
    Uberuaga BP; Bai XM
    J Phys Condens Matter; 2011 Nov; 23(43):435004. PubMed ID: 21960062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces.
    Selcuk S; Selloni A
    Nat Mater; 2016 Oct; 15(10):1107-12. PubMed ID: 27322821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge and magnetic states of rutile TiO2 doped with Cr ions.
    Kim R; Cho S; Park WG; Cho DY; Oh SJ; Saint-Martin R; Berthet P; Park JG; Yu J
    J Phys Condens Matter; 2014 Apr; 26(14):146003. PubMed ID: 24651728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference in TiO₂ photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water.
    Kakuma Y; Nosaka AY; Nosaka Y
    Phys Chem Chem Phys; 2015 Jul; 17(28):18691-8. PubMed ID: 26120611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trap states and carrier dynamics of TiO(2) studied by photoluminescence spectroscopy under weak excitation condition.
    Wang X; Feng Z; Shi J; Jia G; Shen S; Zhou J; Li C
    Phys Chem Chem Phys; 2010 Jul; 12(26):7083-90. PubMed ID: 20467660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sol-gel synthesis of mesoporous anatase-brookite and anatase-brookite-rutile TiO2 nanoparticles and their photocatalytic properties.
    Mutuma BK; Shao GN; Kim WD; Kim HT
    J Colloid Interface Sci; 2015 Mar; 442():1-7. PubMed ID: 25514642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic properties of electrochemically populated electronic states in nanostructured TiO2 films: anatase versus rutile.
    Berger T; Anta JA; Morales-Flórez V
    Phys Chem Chem Phys; 2013 Sep; 15(33):13790-5. PubMed ID: 23860863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ti-Ti σ bond at oxygen vacancy inducing the deep defect level in anatase TiO
    Hao YN; Chen T; Zhang X; Zhou H; Ma Y
    J Chem Phys; 2019 Jun; 150(22):224702. PubMed ID: 31202251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of self-trapped electrons in rutile TiO2.
    Yan L; Elenewski JE; Jiang W; Chen H
    Phys Chem Chem Phys; 2015 Nov; 17(44):29949-57. PubMed ID: 26490001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
    Li G; Richter CP; Milot RL; Cai L; Schmuttenmaer CA; Crabtree RH; Brudvig GW; Batista VS
    Dalton Trans; 2009 Dec; (45):10078-85. PubMed ID: 19904436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.