These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 25192116)

  • 1. Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field.
    Guimarães MH; Zomer PJ; Ingla-Aynés J; Brant JC; Tombros N; van Wees BJ
    Phys Rev Lett; 2014 Aug; 113(8):086602. PubMed ID: 25192116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of Spin-Valley-Coupling-Induced Large Spin-Lifetime Anisotropy in Bilayer Graphene.
    Leutenantsmeyer JC; Ingla-Aynés J; Fabian J; van Wees BJ
    Phys Rev Lett; 2018 Sep; 121(12):127702. PubMed ID: 30296147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic spin relaxation in graphene.
    Tombros N; Tanabe S; Veligura A; Jozsa C; Popinciuc M; Jonkman HT; van Wees BJ
    Phys Rev Lett; 2008 Jul; 101(4):046601. PubMed ID: 18764351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong and Tunable Spin-Lifetime Anisotropy in Dual-Gated Bilayer Graphene.
    Xu J; Zhu T; Luo YK; Lu YM; Kawakami RK
    Phys Rev Lett; 2018 Sep; 121(12):127703. PubMed ID: 30296144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric Field Control of Spin Lifetimes in Nb-SrTiO_{3} by Spin-Orbit Fields.
    Kamerbeek AM; Högl P; Fabian J; Banerjee T
    Phys Rev Lett; 2015 Sep; 115(13):136601. PubMed ID: 26451572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-orbit proximity effect in graphene.
    Avsar A; Tan JY; Taychatanapat T; Balakrishnan J; Koon GK; Yeo Y; Lahiri J; Carvalho A; Rodin AS; O'Farrell EC; Eda G; Castro Neto AH; Özyilmaz B
    Nat Commun; 2014 Sep; 5():4875. PubMed ID: 25255743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of anisotropic Rashba spin-orbit coupling on current-induced spin polarization in graphene.
    Hosseini MV
    J Phys Condens Matter; 2017 Aug; 29(31):315502. PubMed ID: 28582268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Hall Effect Measurement of Spin-Orbit Coupling Strengths in Ultraclean Bilayer Graphene/WSe
    Wang D; Che S; Cao G; Lyu R; Watanabe K; Taniguchi T; Lau CN; Bockrath M
    Nano Lett; 2019 Oct; 19(10):7028-7034. PubMed ID: 31525877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure effect on the spin-dependent electronic structure of Au intercalated h-BN/graphene/h-BN.
    Xia Y; Li Z
    J Phys Condens Matter; 2016 Dec; 28(50):505004. PubMed ID: 27792665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic spin drift in graphene field-effect transistors.
    Józsa C; Popinciuc M; Tombros N; Jonkman HT; van Wees BJ
    Phys Rev Lett; 2008 Jun; 100(23):236603. PubMed ID: 18643531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field.
    Ilyasov VV; Meshi BC; Nguyen VC; Ershov IV; Nguyen DC
    J Chem Phys; 2014 Jul; 141(1):014708. PubMed ID: 25005304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switchable crossed spin conductance in a graphene-based junction: The role of spin-orbit coupling.
    Beiranvand R; Hamzehpour H
    Sci Rep; 2020 Feb; 10(1):2009. PubMed ID: 32029869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin polarization induced by in-plane electric and magnetic fields in two-dimensional heavy-hole systems.
    Wang CM; Liu SY; Lin Q; Lei XL; Pang MQ
    J Phys Condens Matter; 2010 Mar; 22(9):095803. PubMed ID: 21389425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of long spin-relaxation times in bilayer graphene at room temperature.
    Yang TY; Balakrishnan J; Volmer F; Avsar A; Jaiswal M; Samm J; Ali SR; Pachoud A; Zeng M; Popinciuc M; Güntherodt G; Beschoten B; Özyilmaz B
    Phys Rev Lett; 2011 Jul; 107(4):047206. PubMed ID: 21867039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eighty-Eight Percent Directional Guiding of Spin Currents with 90 μm Relaxation Length in Bilayer Graphene Using Carrier Drift.
    Ingla-Aynés J; Meijerink RJ; Wees BJ
    Nano Lett; 2016 Aug; 16(8):4825-30. PubMed ID: 27399228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Side-gated, enhancement mode, InAs nanowire double quantum dot devices-toward controlling transverse electric fields in spin-transport measurements.
    Dorsch S; Dalelkhan B; Fahlvik S; Burke AM
    Nanotechnology; 2019 Apr; 30(14):144002. PubMed ID: 30641514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical detection of spin precession in freely suspended graphene spin valves on cross-linked poly(methyl methacrylate).
    Neumann I; Van de Vondel J; Bridoux G; Costache MV; Alzina F; Sotomayor Torres CM; Valenzuela SO
    Small; 2013 Jan; 9(1):156-60. PubMed ID: 23023768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full electrical control of the electron spin relaxation in GaAs quantum wells.
    Balocchi A; Duong QH; Renucci P; Liu BL; Fontaine C; Amand T; Lagarde D; Marie X
    Phys Rev Lett; 2011 Sep; 107(13):136604. PubMed ID: 22026883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralong 100 ns spin relaxation time in graphite at room temperature.
    Márkus BG; Gmitra M; Dóra B; Csősz G; Fehér T; Szirmai P; Náfrádi B; Zólyomi V; Forró L; Fabian J; Simon F
    Nat Commun; 2023 May; 14(1):2831. PubMed ID: 37198155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.