These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 25192257)
21. Improved green fluorescent protein by molecular evolution using DNA shuffling. Crameri A; Whitehorn EA; Tate E; Stemmer WP Nat Biotechnol; 1996 Mar; 14(3):315-9. PubMed ID: 9630892 [TBL] [Abstract][Full Text] [Related]
22. Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Zhao Y; Abdelfattah AS; Zhao Y; Ruangkittisakul A; Ballanyi K; Campbell RE; Harrison DJ Integr Biol (Camb); 2014 Jul; 6(7):714-25. PubMed ID: 24840546 [TBL] [Abstract][Full Text] [Related]
23. Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Babakhanova S; Jung EE; Namikawa K; Zhang H; Wang Y; Subach OM; Korzhenevskiy DA; Rakitina TV; Xiao X; Wang W; Shi J; Drobizhev M; Park D; Eisenhard L; Tang H; Köster RW; Subach FV; Boyden ES; Piatkevich KD Protein Sci; 2022 Mar; 31(3):728-751. PubMed ID: 34913537 [TBL] [Abstract][Full Text] [Related]
24. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Piatkevich KD; Jung EE; Straub C; Linghu C; Park D; Suk HJ; Hochbaum DR; Goodwin D; Pnevmatikakis E; Pak N; Kawashima T; Yang CT; Rhoades JL; Shemesh O; Asano S; Yoon YG; Freifeld L; Saulnier JL; Riegler C; Engert F; Hughes T; Drobizhev M; Szabo B; Ahrens MB; Flavell SW; Sabatini BL; Boyden ES Nat Chem Biol; 2018 Apr; 14(4):352-360. PubMed ID: 29483642 [TBL] [Abstract][Full Text] [Related]
25. GFP-like chromoproteins as a source of far-red fluorescent proteins. Gurskaya NG; Fradkov AF; Terskikh A; Matz MV; Labas YA; Martynov VI; Yanushevich YG; Lukyanov KA; Lukyanov SA FEBS Lett; 2001 Oct; 507(1):16-20. PubMed ID: 11682051 [TBL] [Abstract][Full Text] [Related]
26. A roadmap to directed enzyme evolution and screening systems for biotechnological applications. Martínez R; Schwaneberg U Biol Res; 2013; 46(4):395-405. PubMed ID: 24510142 [TBL] [Abstract][Full Text] [Related]
27. Recombinase-mediated cassette exchange as a novel method to study somatic hypermutation in Ramos cells. Baughn LB; Kalis SL; MacCarthy T; Wei L; Fan M; Bergman A; Scharff MD mBio; 2011; 2(5):. PubMed ID: 21990614 [TBL] [Abstract][Full Text] [Related]
28. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. Shen Y; Chen Y; Wu J; Shaner NC; Campbell RE PLoS One; 2017; 12(2):e0171257. PubMed ID: 28241009 [TBL] [Abstract][Full Text] [Related]
29. Engineered protein function by selective amino acid diversification. Minshull J; Govindarajan S; Cox T; Ness JE; Gustafsson C Methods; 2004 Apr; 32(4):416-27. PubMed ID: 15003604 [TBL] [Abstract][Full Text] [Related]
30. Characterizing somatic hypermutation and gene conversion in the chicken DT40 cell system. Kothapalli N; Fugmann SD Methods Mol Biol; 2011; 748():255-71. PubMed ID: 21701980 [TBL] [Abstract][Full Text] [Related]
31. Red fluorescent protein variants with incorporated non-natural amino acid analogues. Goulding A; Shrestha S; Dria K; Hunt E; Deo SK Protein Eng Des Sel; 2008 Feb; 21(2):101-6. PubMed ID: 18203801 [TBL] [Abstract][Full Text] [Related]
32. DNA shuffling brightens prospects for GFP. Matsumura I; Ellington AD Nat Biotechnol; 1996 Mar; 14(3):366. PubMed ID: 9630902 [No Abstract] [Full Text] [Related]
33. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Higashijima S; Okamoto H; Ueno N; Hotta Y; Eguchi G Dev Biol; 1997 Dec; 192(2):289-99. PubMed ID: 9441668 [TBL] [Abstract][Full Text] [Related]
34. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils. Campo VA; Patenaude AM; Kaden S; Horb L; Firka D; Jiricny J; Di Noia JM Nucleic Acids Res; 2013 Mar; 41(5):3032-46. PubMed ID: 23314153 [TBL] [Abstract][Full Text] [Related]
35. Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Shkrob MA; Yanushevich YG; Chudakov DM; Gurskaya NG; Labas YA; Poponov SY; Mudrik NN; Lukyanov S; Lukyanov KA Biochem J; 2005 Dec; 392(Pt 3):649-54. PubMed ID: 16164420 [TBL] [Abstract][Full Text] [Related]
36. Protein and genome evolution in Mammalian cells for biotechnology applications. Majors BS; Chiang GG; Betenbaugh MJ Mol Biotechnol; 2009 Jun; 42(2):216-23. PubMed ID: 19367473 [TBL] [Abstract][Full Text] [Related]
37. Generation of protein lineages with new sequence spaces by functional salvage screen. Kim GJ; Cheon YH; Park MS; Park HS; Kim HS Protein Eng; 2001 Sep; 14(9):647-54. PubMed ID: 11707610 [TBL] [Abstract][Full Text] [Related]
38. Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution. Doi N; Yanagawa H FEBS Lett; 1999 Jun; 453(3):305-7. PubMed ID: 10405165 [TBL] [Abstract][Full Text] [Related]
39. Structure-guided reprogramming of serine recombinase DNA sequence specificity. Gaj T; Mercer AC; Gersbach CA; Gordley RM; Barbas CF Proc Natl Acad Sci U S A; 2011 Jan; 108(2):498-503. PubMed ID: 21187418 [TBL] [Abstract][Full Text] [Related]
40. Enhanced fluorescence resonance energy transfer between spectral variants of green fluorescent protein through zinc-site engineering. Jensen KK; Martini L; Schwartz TW Biochemistry; 2001 Jan; 40(4):938-45. PubMed ID: 11170415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]