These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25192632)

  • 1. Implicit and explicit statistical learning of tone sequences across spectral shifts.
    Daikoku T; Yatomi Y; Yumoto M
    Neuropsychologia; 2014 Oct; 63():194-204. PubMed ID: 25192632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical learning of music- and language-like sequences and tolerance for spectral shifts.
    Daikoku T; Yatomi Y; Yumoto M
    Neurobiol Learn Mem; 2015 Feb; 118():8-19. PubMed ID: 25451311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early processing of pitch in the human auditory system.
    Alho K; Grimm S; Mateo-León S; Costa-Faidella J; Escera C
    Eur J Neurosci; 2012 Oct; 36(7):2972-8. PubMed ID: 22765015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering.
    Daikoku T; Yatomi Y; Yumoto M
    Neuropsychologia; 2017 Jan; 95():1-10. PubMed ID: 27939187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pitch processing of dynamic lexical tones in the auditory cortex is influenced by sensory and extrasensory processes.
    Krishnan A; Gandour JT; Suresh CH
    Eur J Neurosci; 2015 May; 41(11):1496-504. PubMed ID: 25943576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential cerebral reactivity to shortest and longer tones: neuromagnetic and behavioral evidence.
    Cheng CH; Hsu WY; Shih YH; Lin HC; Liao KK; Wu ZA; Lin YY
    Hear Res; 2010 Sep; 268(1-2):260-70. PubMed ID: 20600746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pitch-class distribution modulates the statistical learning of atonal chord sequences.
    Daikoku T; Yatomi Y; Yumoto M
    Brain Cogn; 2016 Oct; 108():1-10. PubMed ID: 27429093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prior experience biases subcortical sensitivity to sound patterns.
    Skoe E; Krizman J; Spitzer E; Kraus N
    J Cogn Neurosci; 2015 Jan; 27(1):124-40. PubMed ID: 25061926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state MEG responses elicited by a sequence of amplitude-modulated short tones of different carrier frequencies.
    Kuriki S; Kobayashi Y; Kobayashi T; Tanaka K; Uchikawa Y
    Hear Res; 2013 Feb; 296():25-35. PubMed ID: 23174483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic responses of the human auditory cortex generated by sensory-memory based processing of tone-frequency changes.
    Korzyukov O; Alho K; Kujala A; Gumenyuk V; Ilmoniemi RJ; Virtanen J; Kropotov J; Näätänen R
    Neurosci Lett; 1999 Dec; 276(3):169-72. PubMed ID: 10612632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal integration affects intensity change detection in human auditory cortex.
    Soeta Y; Nakagawa S
    Neuroreport; 2010 Dec; 21(18):1157-61. PubMed ID: 20938362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic fields elicited by tones and vowel formants reveal tonotopy and nonlinear summation of cortical activation.
    Diesch E; Luce T
    Psychophysiology; 1997 Sep; 34(5):501-10. PubMed ID: 9299904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta).
    Schwarz DW; Tomlinson RW
    J Neurophysiol; 1990 Jul; 64(1):282-98. PubMed ID: 2388072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latency variation of auditory N1m responses to vocal and nonvocal sounds.
    Mizuochi T; Yumoto M; Karino S; Itoh K; Yamasoba T
    Neuroreport; 2007 Dec; 18(18):1945-9. PubMed ID: 18007192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One set of sounds, two tonotopic maps: exploring auditory cortex with amplitude-modulated tones.
    Weisz N; Keil A; Wienbruch C; Hoffmeister S; Elbert T
    Clin Neurophysiol; 2004 Jun; 115(6):1249-58. PubMed ID: 15134691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced anterior-temporal processing for complex tones in musicians.
    Shahin AJ; Roberts LE; Pantev C; Aziz M; Picton TW
    Clin Neurophysiol; 2007 Jan; 118(1):209-20. PubMed ID: 17095291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tonotopic representation of missing fundamental complex sounds in the human auditory cortex.
    Fujioka T; Ross B; Okamoto H; Takeshima Y; Kakigi R; Pantev C
    Eur J Neurosci; 2003 Jul; 18(2):432-40. PubMed ID: 12887425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The retention of simultaneous tones in auditory short-term memory: a magnetoencephalography study.
    Nolden S; Grimault S; Guimond S; Lefebvre C; Bermudez P; Jolicoeur P
    Neuroimage; 2013 Nov; 82():384-92. PubMed ID: 23751862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.