These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 2519271)
1. [Age-dependent changes in the phosphorylation of nuclear phosphoproteins of rat salivary glands]. Koda N; Cang C; Yong C; Lu ZD; Ishikawa Y; Ishida H Shika Kiso Igakkai Zasshi; 1989 Jun; 31(3):291-301. PubMed ID: 2519271 [TBL] [Abstract][Full Text] [Related]
2. Age-dependent changes in the phosphorylation of nuclear proteins of submandibular glands in isoproterenol-treated rats. Ishikawa Y; Chen C; Amano I; Koda N; Ishida H Mech Ageing Dev; 1993 Aug; 70(1-2):127-37. PubMed ID: 8231284 [TBL] [Abstract][Full Text] [Related]
3. Differential kinase systems are involved in the rapidly turning over phosphorylation of prominent nuclear proteins. Holst M; Egyházi E Biochim Biophys Acta; 1987 Nov; 931(2):224-33. PubMed ID: 3663717 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation of salivary proteins by salivary gland protein kinase. Madapallimattam G; Bennick A J Dent Res; 1986 Mar; 65(3):405-11. PubMed ID: 3007590 [TBL] [Abstract][Full Text] [Related]
5. Specific expression of an A-kinase anchoring protein subtype, AKAP-150, and specific regulatory mechanism for Na(+),K(+)-ATPase via protein kinase A in the parotid gland among the three major salivary glands of the rat. Kurihara K; Nakanishi N; Amano O; Yamamoto M; Iseki S Biochem Pharmacol; 2003 Jul; 66(2):239-50. PubMed ID: 12826266 [TBL] [Abstract][Full Text] [Related]
6. The rate-determining step in cAMP-mediated exocytosis in the rat parotid and submandibular glands appears to involve analogous 26-kDa integral membrane phosphoproteins. Quissell DO; Deisher LM; Barzen KA Proc Natl Acad Sci U S A; 1985 May; 82(10):3237-41. PubMed ID: 2987915 [TBL] [Abstract][Full Text] [Related]
7. The salivary gland 42-kDa phosphoprotein is a single-stranded DNA-binding protein with characteristics of the epithelial casein kinase N42 in Chironomus tentans. Stigare J; Lajic S; Holst M; Pigon A; Egyházi E Mol Cell Biochem; 1994 Dec; 141(1):35-46. PubMed ID: 7877607 [TBL] [Abstract][Full Text] [Related]
8. Peroxidase activity and cell differentiation in developing salivary glands of the rats. Moriguchi K; Yamamoto M; Asano T; Shibata T Okajimas Folia Anat Jpn; 1995 May; 72(1):13-28. PubMed ID: 7566876 [TBL] [Abstract][Full Text] [Related]
9. Developmental changes in the activities of prolinase and prolidase in rat salivary glands, and the effect of thyroxine administration. Imai K; Nagatsu T; Yajima T; Maeda N; Kumegawa M; Kato T Mol Cell Biochem; 1982 Jan; 42(1):31-6. PubMed ID: 7062907 [TBL] [Abstract][Full Text] [Related]
10. Co-ordinated changes in the cyclic AMP signalling system and the phosphorylation of two nuclear proteins of Mr 130,000 and 110,000 during proliferative stimulation of the rat parotid gland by isoprenaline. Possible identity of the two proteins with pp135 and nucleolin. Hoffmann J; Schwoch G Biochem J; 1989 Nov; 263(3):785-93. PubMed ID: 2557010 [TBL] [Abstract][Full Text] [Related]
11. Beta-adrenergic receptors and salivary gland secretion during aging. Rajakumar G; Koller MM; Scarpace PJ Growth Dev Aging; 1992; 56(4):215-23. PubMed ID: 1336769 [TBL] [Abstract][Full Text] [Related]
12. Staurosporine-inhibitable protein kinase activity associated with secretory granule membranes isolated from rat submandibular gland cells. Seo SR; Kim YJ; Moon SJ; Sugiya H; Shin DM; Lee SI; Seo JT Arch Oral Biol; 2003 Aug; 48(8):553-8. PubMed ID: 12828983 [TBL] [Abstract][Full Text] [Related]
13. Mononuclear cells in salivary glands of normal and isoproterenol-treated rats. Cohen RE; Noble B; Neiders ME; Comeau RL Arch Oral Biol; 1995 Nov; 40(11):1015-21. PubMed ID: 8670019 [TBL] [Abstract][Full Text] [Related]
14. Dephosphorylation of nuclear non-histone proteins in submandibular glands of rats treated with isoproterenol. Amano I; Ishikawa Y; Ishida H Res Exp Med (Berl); 1994; 194(3):185-96. PubMed ID: 7522336 [TBL] [Abstract][Full Text] [Related]
15. Lipid droplet accumulation and lipoprotein lipase activity in the rat salivary gland during the perinatal period. Nagato T; Masuno H Arch Oral Biol; 1993 Dec; 38(12):1127-34. PubMed ID: 8141676 [TBL] [Abstract][Full Text] [Related]
16. Protein phosphorylation and control of tick salivary gland function. Sauer JR; McSwain JL; Tucker JS; Shelby KS; Williams JP; Essenberg RC Exp Appl Acarol; 1989 Jun; 7(1):81-94. PubMed ID: 2547551 [TBL] [Abstract][Full Text] [Related]
17. Ontogenesis of monoamine-synthesizing enzyme activities and biopterin levels in rat brain or salivary glands, and the effects of thyroxine administration. Kato T; Yamaguchi T; Togari A; Nagatsu T; Yajima T; Maeda N; Kumegawa M J Neurochem; 1982 Apr; 38(4):896-901. PubMed ID: 6121004 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the insulin-signaling pathway in lacrimal and salivary glands of rats. Rocha EM; de M Lima MH; Carvalho CR; Saad MJ; Velloso LA Curr Eye Res; 2000 Nov; 21(5):833-42. PubMed ID: 11262604 [TBL] [Abstract][Full Text] [Related]
19. Salivary gland ultrastructure and cyclic AMP-dependent reactions in Spacelab 3 rats. Mednieks MI; Hand AR Am J Physiol; 1987 Feb; 252(2 Pt 2):R233-9. PubMed ID: 3028181 [TBL] [Abstract][Full Text] [Related]
20. Histological and histochemical study of rat salivary glands during their postnatal development. Carpen E; Papilian VV Morphol Embryol (Bucur); 1980; 26(3):259-64. PubMed ID: 6453288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]