BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25192731)

  • 21. Training effects on muscle glucose transport during exercise.
    Richter EA; Kristiansen S; Wojtaszewski J; Daugaard JR; Asp S; Hespel P; Kiens B
    Adv Exp Med Biol; 1998; 441():107-16. PubMed ID: 9781318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiovascular responses and neurotransmitter changes during static muscle contraction following blockade of inducible nitric oxide synthase (iNOS) within the ventrolateral medulla.
    Ally A; Phattanarudee S; Kabadi S; Patel M; Maher TJ
    Brain Res; 2006 May; 1090(1):123-33. PubMed ID: 16650388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calmodulin-binding domain of AS160 regulates contraction- but not insulin-stimulated glucose uptake in skeletal muscle.
    Kramer HF; Taylor EB; Witczak CA; Fujii N; Hirshman MF; Goodyear LJ
    Diabetes; 2007 Dec; 56(12):2854-62. PubMed ID: 17717281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between muscle fibre composition, glucose transporter protein 4 and exercise training: possible consequences in non-insulin-dependent diabetes mellitus.
    Daugaard JR; Richter EA
    Acta Physiol Scand; 2001 Mar; 171(3):267-76. PubMed ID: 11412139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbamylated low-density lipoprotein attenuates glucose uptake via a nitric oxide-mediated pathway in rat L6 skeletal muscle cells.
    Choi HJ; Lee KJ; Hwang EA; Mun KC; Ha E
    Mol Med Rep; 2015 Jul; 12(1):1342-6. PubMed ID: 25779204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exercise signalling to glucose transport in skeletal muscle.
    Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Birk JB; Wojtaszewski JF
    Proc Nutr Soc; 2004 May; 63(2):211-6. PubMed ID: 15294032
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contraction signaling to glucose transport in skeletal muscle.
    Jessen N; Goodyear LJ
    J Appl Physiol (1985); 2005 Jul; 99(1):330-7. PubMed ID: 16036906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction.
    Kjøbsted R; Roll JLW; Jørgensen NO; Birk JB; Foretz M; Viollet B; Chadt A; Al-Hasani H; Wojtaszewski JFP
    Diabetes; 2019 Jul; 68(7):1427-1440. PubMed ID: 31010958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Signalling to glucose transport in skeletal muscle during exercise.
    Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Wojtaszewski JF
    Acta Physiol Scand; 2003 Aug; 178(4):329-35. PubMed ID: 12864737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenosine and nitric oxide in exercise-induced human skeletal muscle vasodilatation.
    Rådegran G; Hellsten Y
    Acta Physiol Scand; 2000 Apr; 168(4):575-91. PubMed ID: 10759594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitric oxide (NO) is involved in modulation of non-insulin mediated glucose transport in chicken skeletal muscles.
    Nishiki Y; Kono T; Fukao K; Sato K; Takahashi K; Toyomizu M; Akiba Y
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jan; 149(1):101-7. PubMed ID: 17942356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Passive stretch regulates skeletal muscle glucose uptake independent of nitric oxide synthase.
    Kerris JP; Betik AC; Li J; McConell GK
    J Appl Physiol (1985); 2019 Jan; 126(1):239-245. PubMed ID: 30236052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of exercise-induced lipid metabolism in skeletal muscle.
    Jordy AB; Kiens B
    Exp Physiol; 2014 Dec; 99(12):1586-92. PubMed ID: 25398709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of nitric oxide in contraction induced glucose transport.
    Balon TW
    Adv Exp Med Biol; 1998; 441():87-95. PubMed ID: 9781316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats.
    Jendzjowsky NG; DeLorey DS
    J Appl Physiol (1985); 2013 Jul; 115(1):97-106. PubMed ID: 23640592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. General aspects of muscle glucose uptake.
    Alvim RO; Cheuhen MR; Machado SR; Sousa AG; Santos PC
    An Acad Bras Cienc; 2015 Mar; 87(1):351-68. PubMed ID: 25761221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle.
    Li J; Hu X; Selvakumar P; Russell RR; Cushman SW; Holman GD; Young LH
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E834-41. PubMed ID: 15265762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in skeletal muscle GLUT4 content and muscle membrane glucose transport following 6 weeks of exercise training.
    McCutcheon LJ; Geor RJ; Hinchcliff KW
    Equine Vet J Suppl; 2002 Sep; (34):199-204. PubMed ID: 12405686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice.
    Maarbjerg SJ; Jørgensen SB; Rose AJ; Jeppesen J; Jensen TE; Treebak JT; Birk JB; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E924-34. PubMed ID: 19654283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current understanding of increased insulin sensitivity after exercise - emerging candidates.
    Maarbjerg SJ; Sylow L; Richter EA
    Acta Physiol (Oxf); 2011 Jul; 202(3):323-35. PubMed ID: 21352505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.