These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 25192738)

  • 41. [Enzymatic resistance to beta lactam antibiotics within the genus Proteus and evaluation of Proteus mirabilis phenotypes and genotypes for resistance to third- and fourth-generation cephalosporins].
    Rodríguez C; Radice M; Perazzi B; Castro S; Juárez J; Santini P; Vay C; Famiglietti A; Gutkind G
    Enferm Infecc Microbiol Clin; 2005 Mar; 23(3):122-6. PubMed ID: 15757582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type beta-lactamase: epidemiology and clinical management.
    Luzzaro F; Brigante G; D'Andrea MM; Pini B; Giani T; Mantengoli E; Rossolini GM; Toniolo A
    Int J Antimicrob Agents; 2009 Apr; 33(4):328-33. PubMed ID: 19095415
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increase in beta-lactam-resistant Proteus mirabilis strains due to CTX-M- and CMY-type as well as new VEB- and inhibitor-resistant TEM-type beta-lactamases.
    Aragón LM; Mirelis B; Miró E; Mata C; Gómez L; Rivera A; Coll P; Navarro F
    J Antimicrob Chemother; 2008 May; 61(5):1029-32. PubMed ID: 18292096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular β-lactamase characterization of Gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials (RECAPTURE 1 and 2) for complicated urinary tract infections: Efficacies analysed against susceptible and resistant subsets.
    Mendes RE; Castanheira M; Woosley LN; Stone GG; Bradford PA; Flamm RK
    Int J Antimicrob Agents; 2018 Aug; 52(2):287-292. PubMed ID: 29654893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Evaluation of the MicroScan NegCombo panel Type 44 for detection of extended-spectrum beta-lactamase among clinical isolates of Escherichia coli, Klebsiella species, and Proteus mirabilis].
    Ko SY; Chung JW; Song AJ; Yoon NS; Sung H; Kim MN
    Korean J Lab Med; 2009 Feb; 29(1):35-40. PubMed ID: 19262076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of MicroScan WalkAway and Vitek 2 for determination of the susceptibility of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates to cefepime, cefotaxime and ceftazidime.
    Jang W; Park YJ; Park KG; Yu J
    J Antimicrob Chemother; 2013 Oct; 68(10):2282-5. PubMed ID: 23671215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cephalosporin MIC distribution of extended-spectrum-{beta}-lactamase- and pAmpC-producing Escherichia coli and Klebsiella species.
    Kohner PC; Robberts FJ; Cockerill FR; Patel R
    J Clin Microbiol; 2009 Aug; 47(8):2419-25. PubMed ID: 19494061
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Characteristic of resistance to beta-lactam antibiotics of nosocomial strains of Proteus mirabilis].
    Ivanov DV
    Zh Mikrobiol Epidemiol Immunobiol; 2008; (6):75-8. PubMed ID: 19189465
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterns and mechanisms of resistance to beta-lactams and beta-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal.
    Féria C; Ferreira E; Correia JD; Gonçalves J; Caniça M
    J Antimicrob Chemother; 2002 Jan; 49(1):77-85. PubMed ID: 11751770
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Consequences of revised CLSI and EUCAST guidelines for antibiotic susceptibility patterns of ESBL- and AmpC β-lactamase-producing clinical Enterobacteriaceae isolates.
    Hombach M; Mouttet B; Bloemberg GV
    J Antimicrob Chemother; 2013 Sep; 68(9):2092-8. PubMed ID: 23633681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique.
    Estaleva CEL; Zimba TF; Sekyere JO; Govinden U; Chenia HY; Simonsen GS; Haldorsen B; Essack SY; Sundsfjord A
    BMC Infect Dis; 2021 Jan; 21(1):16. PubMed ID: 33407206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prevalence and molecular characteristics of ESBL and AmpC β -lactamase producing Enterobacteriaceae strains isolated from UTIs in Egypt.
    Mohamed ES; Khairy RMM; Abdelrahim SS
    Antimicrob Resist Infect Control; 2020 Dec; 9(1):198. PubMed ID: 33303028
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prevalence of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and spread of the ST131 clone among extended-spectrum β-lactamase-producing E. coli in Japan.
    Matsumura Y; Yamamoto M; Higuchi T; Komori T; Tsuboi F; Hayashi A; Sugimoto Y; Hotta G; Matsushima A; Nagao M; Takakura S; Ichiyama S
    Int J Antimicrob Agents; 2012 Aug; 40(2):158-62. PubMed ID: 22743014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genotypic and phenotypic profiles of virulence factors and antimicrobial resistance of Proteus mirabilis isolated from chicken carcasses: potential zoonotic risk.
    Sanches MS; Baptista AAS; de Souza M; Menck-Costa MF; Koga VL; Kobayashi RKT; Rocha SPD
    Braz J Microbiol; 2019 Jul; 50(3):685-694. PubMed ID: 31049879
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Study of resistance mechanism on cefotaxime resistant Proteus mirabilis isolated from clinical specimens and its clinical background].
    Horiguchi Y; Hashikita G; Oka Y; Takahashi S; Yamazaki T; Maesaki S; Ishii Y
    Kansenshogaku Zasshi; 2004 Jan; 78(1):1-9. PubMed ID: 15103887
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Fosfomycin susceptibility of urinary Escherichia coli isolates producing extended-spectrum beta-lactamase according to CLSI and EUCAST recommendations].
    Cağan Aktaş S; Gençer S; Batırel A; Hacıseyitoğlu D; Ozer S
    Mikrobiyol Bul; 2014 Oct; 48(4):545-55. PubMed ID: 25492650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phenotypic detection of AmpC β-lactamases, extended-spectrum β-lactamases and metallo-β-lactamases in Enterobacteriaceae using a resazurin microtitre assay with inhibitor-based methods.
    Teethaisong Y; Eumkeb G; Chumnarnsilpa S; Autarkool N; Hobson J; Nakouti I; Hobbs G; Evans K
    J Med Microbiol; 2016 Oct; 65(10):1079-1087. PubMed ID: 27481506
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of ESBL- and AmpC-Producing Enterobacteriaceae from Diseased Companion Animals in Europe.
    Bogaerts P; Huang TD; Bouchahrouf W; Bauraing C; Berhin C; El Garch F; Glupczynski Y;
    Microb Drug Resist; 2015 Dec; 21(6):643-50. PubMed ID: 26098354
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Antimicrobial Susceptibility of Klebsiella pneumoniae from Community Settings in Taiwan, a Trend Analysis.
    Lin WP; Wang JT; Chang SC; Chang FY; Fung CP; Chuang YC; Chen YS; Shiau YR; Tan MC; Wang HY; Lai JF; Huang IW; Lauderdale TL
    Sci Rep; 2016 Nov; 6():36280. PubMed ID: 27824151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prevalence study of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible ampC from Saudi hospitals.
    Abdalhamid B; Albunayan S; Shaikh A; Elhadi N; Aljindan R
    J Med Microbiol; 2017 Sep; 66(9):1286-1290. PubMed ID: 28820112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.