These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 25192744)

  • 21. Application of machine learning to the identification of joint degrees of freedom involved in abnormal movement during upper limb prosthesis use.
    Wang SL; Bloomer C; Civillico G; Kontson K
    PLoS One; 2021; 16(2):e0246795. PubMed ID: 33571311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of Motion Analysis Systems in Tracking Upper Body Movement of Myoelectric Bypass Prosthesis Users.
    Wang SL; Civillico G; Niswander W; Kontson KL
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transhumeral prosthesis use affects upper body kinematics and kinetics.
    Dunn JA; Gomez NG; Wong B; Sinclair SK; Henninger HB; Foreman KB; Bachus KN
    Gait Posture; 2024 Jul; 112():59-66. PubMed ID: 38744022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements.
    Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK
    J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic comparison of myoelectric and body powered prostheses while performing common activities.
    Carey SL; Dubey RV; Bauer GS; Highsmith MJ
    Prosthet Orthot Int; 2009 Jun; 33(2):179-86. PubMed ID: 19367522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional kinematics of upper limb anatomical movements in asymptomatic adults: Dominant vs. non-dominant.
    Assi A; Bakouny Z; Karam M; Massaad A; Skalli W; Ghanem I
    Hum Mov Sci; 2016 Dec; 50():10-18. PubMed ID: 27639219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinematic comparison of the wrist movements that are possible with a biomechatronics wrist prosthesis and a body-powered prosthesis: a preliminary study.
    Abd Razak NA; Abu Osman NA; Wan Abas WA
    Disabil Rehabil Assist Technol; 2013 May; 8(3):255-60. PubMed ID: 22830946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in quality of movements made with body-powered and myoelectric prostheses during activities of daily living.
    Engdahl SM; Gates DH
    Clin Biomech (Bristol, Avon); 2021 Apr; 84():105311. PubMed ID: 33812199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks.
    Thies SB; Kenney LP; Sobuh M; Galpin A; Kyberd P; Stine R; Major MJ
    Med Eng Phys; 2017 Sep; 47():137-143. PubMed ID: 28684214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulated activities of daily living do not replicate functional upper limb movement or reduce movement variability.
    Taylor SAF; Kedgley AE; Humphries A; Shaheen AF
    J Biomech; 2018 Jul; 76():119-128. PubMed ID: 29908656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinematic analysis of upper limbs and trunk movement during bilateral movement after stroke.
    Messier S; Bourbonnais D; Desrosiers J; Roy Y
    Arch Phys Med Rehabil; 2006 Nov; 87(11):1463-70. PubMed ID: 17084121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Neurobehavioral Outcomes of Action Observation Prosthesis Training.
    Cusack WF; Thach S; Patterson R; Acker D; Kistenberg RS; Wheaton LA
    Neurorehabil Neural Repair; 2016 Jul; 30(6):573-82. PubMed ID: 26438442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control.
    Crouch DL; Huang H
    J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measures of Interjoint Coordination Post-stroke Across Different Upper Limb Movement Tasks.
    Schwarz A; Veerbeek JM; Held JPO; Buurke JH; Luft AR
    Front Bioeng Biotechnol; 2020; 8():620805. PubMed ID: 33585418
    [No Abstract]   [Full Text] [Related]  

  • 36. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion.
    Ahmed MH; Chai J; Shimoda S; Hayashibe M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nature of arm movement in children with cerebral palsy when using computer-generated exercise games.
    Weightman A; Preston N; Levesley M; Bhakta B; Holt R; Mon-Williams M
    Disabil Rehabil Assist Technol; 2014 May; 9(3):219-25. PubMed ID: 23597314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinematic profiles during activities of daily living in adults with traumatic brachial plexus injuries.
    Webber CM; Shin AY; Kaufman KR
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():209-216. PubMed ID: 31669918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability of upper limb and trunk joint angles in healthy adults during activities of daily living.
    Engdahl SM; Gates DH
    Gait Posture; 2018 Feb; 60():41-47. PubMed ID: 29153478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active upper limb prosthesis based on natural movement trajectories.
    Ramírez-García A; Leija L; Muñoz R
    Prosthet Orthot Int; 2010 Mar; 34(1):58-72. PubMed ID: 20196688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.