These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25192885)

  • 1. The dynamic isohydric-anisohydric behavior of plants upon fruit development: taking a risk for the next generation.
    Sade N; Moshelion M
    Tree Physiol; 2014 Nov; 34(11):1199-202. PubMed ID: 25192885
    [No Abstract]   [Full Text] [Related]  

  • 2. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought.
    Nolan RH; Tarin T; Santini NS; McAdam SAM; Ruman R; Eamus D
    Plant Cell Environ; 2017 Dec; 40(12):3122-3134. PubMed ID: 28982212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?
    Domec JC; Johnson DM
    Tree Physiol; 2012 Mar; 32(3):245-8. PubMed ID: 22427373
    [No Abstract]   [Full Text] [Related]  

  • 4. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
    Burkhardt J; Pariyar S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent enhancement of water relations during post-fire resprouting.
    Schafer JL; Breslow BP; Hollingsworth SN; Hohmann MG; Hoffmann WA
    Tree Physiol; 2014 Apr; 34(4):404-14. PubMed ID: 24682534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iso/Anisohydry: A Plant-Environment Interaction Rather Than a Simple Hydraulic Trait.
    Hochberg U; Rockwell FE; Holbrook NM; Cochard H
    Trends Plant Sci; 2018 Feb; 23(2):112-120. PubMed ID: 29223922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric?
    Kumagai T; Porporato A
    Plant Cell Environ; 2012 Jan; 35(1):61-71. PubMed ID: 21933196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.
    Tombesi S; Nardini A; Farinelli D; Palliotti A
    Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings.
    Villar-Salvador P; Peñuelas JL; Jacobs DF
    Tree Physiol; 2013 Feb; 33(2):221-32. PubMed ID: 23370549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield.
    Moshelion M; Halperin O; Wallach R; Oren R; Way DA
    Plant Cell Environ; 2015 Sep; 38(9):1785-93. PubMed ID: 25039365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production.
    Allario T; Brumos J; Colmenero-Flores JM; Iglesias DJ; Pina JA; Navarro L; Talon M; Ollitrault P; Morillon R
    Plant Cell Environ; 2013 Apr; 36(4):856-68. PubMed ID: 23050986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.
    Matimati I; Verboom GA; Cramer MD
    J Exp Bot; 2014 Jan; 65(1):159-68. PubMed ID: 24231035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2014 Jan; 37(1):132-9. PubMed ID: 23701708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models.
    Franks PJ; Berry JA; Lombardozzi DL; Bonan GB
    Plant Physiol; 2017 Jun; 174(2):583-602. PubMed ID: 28446638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early evolutionary acquisition of stomatal control and development gene signalling networks.
    Chater C; Gray JE; Beerling DJ
    Curr Opin Plant Biol; 2013 Oct; 16(5):638-46. PubMed ID: 23871687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does citrus leaf miner impair hydraulics and fitness of citrus host plants?
    Raimondo F; Trifilò P; Gullo MA
    Tree Physiol; 2013 Dec; 33(12):1319-27. PubMed ID: 24319027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area.
    Zhang Y; Oren R; Kang S
    Tree Physiol; 2012 Mar; 32(3):262-79. PubMed ID: 22157418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient availability moderates transpiration in Ehrharta calycina.
    Cramer MD; Hoffmann V; Verboom GA
    New Phytol; 2008; 179(4):1048-1057. PubMed ID: 18537891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.