These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25193446)

  • 1. Zinc tolerance and zinc removal ability of living and dried biomass of Desmodesmus communis.
    Novák Z; Jánószky M; B-Béres V; Nagy SA; Bácsi I
    Bull Environ Contam Toxicol; 2014 Dec; 93(6):676-82. PubMed ID: 25193446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation.
    Zhang Y; He M; Zou S; Fei C; Yan Y; Zheng S; Rajper AA; Wang C
    Bioresour Technol; 2016 May; 207():268-75. PubMed ID: 26894567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance of Ulothrix sp. LAFIC 010 (Chlorophyta) against high concentration of metals from acid mine drainage.
    Massocato TF; Ramos JC; Bascuñan VLF; Simioni C; Rörig LR; Bonomi Barufi J
    Ecotoxicol Environ Saf; 2018 Aug; 157():227-234. PubMed ID: 29625396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of caprolactam and its influence on growth and oxygen production of Desmodesmus quadricauda algae.
    Kalinová JP; Tříska J; Vrchotová N; Novák J
    Environ Pollut; 2016 Jun; 213():518-523. PubMed ID: 26985739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of
    Huarachi-Olivera R; Mata MT; Valdés J; Riquelme C
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc.
    Monteiro CM; Marques AP; Castro PM; Xavier Malcata F
    Biodegradation; 2009 Sep; 20(5):629-41. PubMed ID: 19225897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption isotherm studies of Cd(II) ions using living cells of the marine microalga Tetraselmis suecica (Kylin) Butch.
    Pérez-Rama M; Torres E; Suárez C; Herrero C; Abalde J
    J Environ Manage; 2010 Oct; 91(10):2045-50. PubMed ID: 20573442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation of wastewater from edible oil refinery factory using oleaginous microalga Desmodesmus sp. S1.
    Mar CC; Fan Y; Li FL; Hu GR
    Int J Phytoremediation; 2016 Dec; 18(12):1195-201. PubMed ID: 27260474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response and detoxification strategies of three freshwater phytoplankton species, Aphanizomenon flos-aquae, Pediastrum simplex, and Synedra acus, to cadmium.
    Ran X; Yue H; Fu X; Kang Y; Xu S; Yang Y; Xu J; Shi J; Wu Z
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19596-606. PubMed ID: 26272291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitive effect of organotin compounds on the chlorophyll content of the green freshwater alga Scenedesmus quadricauda.
    Fargasová A
    Bull Environ Contam Toxicol; 1996 Jul; 57(1):99-106. PubMed ID: 8661466
    [No Abstract]   [Full Text] [Related]  

  • 11. Biosorption of zinc (II) using Spirogyra species from electroplating effluent.
    Bishnoi NR; Bajaj M; Sanatomba K
    J Environ Biol; 2005 Oct; 26(4):661-4. PubMed ID: 16459553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Cu(2+) and Zn(2+) on growth and physiological characteristics of green algae, Cladophora.
    Cao DJ; Xie PP; Deng JW; Zhang HM; Ma RX; Liu C; Liu RJ; Liang YG; Li H; Shi XD
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16535-41. PubMed ID: 26077320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal removal by microalgae.
    Travieso L; Cañizares RO; Borja R; Benítez F; Domínguez AR; Dupeyrón R; Valiente V
    Bull Environ Contam Toxicol; 1999 Feb; 62(2):144-51. PubMed ID: 9933311
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of Bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability.
    Ben Ouada S; Ben Ali R; Leboulanger C; Ben Ouada H; Sayadi S
    Ecotoxicol Environ Saf; 2018 Aug; 158():1-8. PubMed ID: 29656159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media.
    Rugnini L; Costa G; Congestri R; Bruno L
    Sci Total Environ; 2017 Dec; 601-602():959-967. PubMed ID: 28582741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Trophic Modes, Carbon Sources, and Salinity on the Cell Growth and Lipid Accumulation of Tropic Ocean Oilgae Strain Desmodesmus sp. WC08.
    Zhao Z; Ma S; Li A; Liu P; Wang M
    Appl Biochem Biotechnol; 2016 Oct; 180(3):452-463. PubMed ID: 27146991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophotonic perception on Desmodesmus sp. VIT growth, lipid and carbohydrate content.
    Sriram S; Seenivasan R
    Bioresour Technol; 2015 Dec; 198():626-33. PubMed ID: 26433787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: effects of nitrate concentration, light intensity and fed-batch operation.
    Xie Y; Ho SH; Chen CN; Chen CY; Ng IS; Jing KJ; Chang JS; Lu Y
    Bioresour Technol; 2013 Sep; 144():435-44. PubMed ID: 23890979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions.
    Ho SH; Chang JS; Lai YY; Chen CN
    Bioresour Technol; 2014 Mar; 156():108-16. PubMed ID: 24491294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic and selenium interactive effect on alga Desmodesmus quadricauda.
    Kramárová Z; Fargašová A; Molnárová M; Bujdoš M
    Ecotoxicol Environ Saf; 2012 Dec; 86():1-6. PubMed ID: 23020988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.