BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 25193493)

  • 1. Whole-genome expression analysis in the third instar larval midgut of Drosophila melanogaster.
    Harrop TW; Pearce SL; Daborn PJ; Batterham P
    G3 (Bethesda); 2014 Sep; 4(11):2197-205. PubMed ID: 25193493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic profiles of Drosophila melanogaster third instar larval midgut and responses to oxidative stress.
    Li HM; Buczkowski G; Mittapalli O; Xie J; Wu J; Westerman R; Schemerhorn BJ; Murdock LL; Pittendrigh BR
    Insect Mol Biol; 2008 Aug; 17(4):325-39. PubMed ID: 18651915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel, tissue-specific integrin subunit, beta nu, expressed in the midgut of Drosophila melanogaster.
    Yee GH; Hynes RO
    Development; 1993 Jul; 118(3):845-58. PubMed ID: 8076521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using tissue specific P450 expression in Drosophila melanogaster larvae to understand the spatial distribution of pesticide metabolism in feeding assays.
    Luong HNB; Kalogeridi M; Vontas J; Denecke S
    Insect Mol Biol; 2022 Jun; 31(3):369-376. PubMed ID: 35118729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut.
    Li HM; Sun L; Mittapalli O; Muir WM; Xie J; Wu J; Schemerhorn BJ; Sun W; Pittendrigh BR; Murdock LL
    Insect Mol Biol; 2009 Feb; 18(1):21-31. PubMed ID: 19196346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster.
    Bogwitz MR; Chung H; Magoc L; Rigby S; Wong W; O'Keefe M; McKenzie JA; Batterham P; Daborn PJ
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12807-12. PubMed ID: 16120680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics.
    David JP; Boyer S; Mesneau A; Ball A; Ranson H; Dauphin-Villemant C
    Insect Biochem Mol Biol; 2006 May; 36(5):410-20. PubMed ID: 16651188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Analysis of
    Christesen D; Yang YT; Somers J; Robin C; Sztal T; Batterham P; Perry T
    G3 (Bethesda); 2017 Feb; 7(2):467-479. PubMed ID: 27974438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Drosophila systems approach to xenobiotic metabolism.
    Yang J; McCart C; Woods DJ; Terhzaz S; Greenwood KG; ffrench-Constant RH; Dow JA
    Physiol Genomics; 2007 Aug; 30(3):223-31. PubMed ID: 17488889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K⁺ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster.
    Vanderveken M; O'Donnell MJ
    Arch Insect Biochem Physiol; 2014 Feb; 85(2):76-93. PubMed ID: 24408875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the Malpighian tubules and fat body transcriptional profiles of Zophobas morio larvae (Coleoptera: Tenebrionidae).
    Silva JR; Amaral DT; Viviani VR
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():95-105. PubMed ID: 30463043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement of Snakeskin for normal functions of midgut and Malpighian tubules in Henosepilachna vigintioctopunctata.
    Zhang XQ; Yang R; Jin L; Li GQ
    Arch Insect Biochem Physiol; 2023 Sep; 114(1):e22033. PubMed ID: 37401505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migration of Drosophila intestinal stem cells across organ boundaries.
    Takashima S; Paul M; Aghajanian P; Younossi-Hartenstein A; Hartenstein V
    Development; 2013 May; 140(9):1903-11. PubMed ID: 23571215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular correlates of organ loss: the case of insect Malpighian tubules.
    Jing X; White TA; Yang X; Douglas AE
    Biol Lett; 2015 May; 11(5):20150154. PubMed ID: 25972400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Drosophila melanogaster cytochrome P450 genes.
    Chung H; Sztal T; Pasricha S; Sridhar M; Batterham P; Daborn PJ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5731-6. PubMed ID: 19289821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution, Expression, and Function of Nonneuronal Ligand-Gated Chloride Channels in Drosophila melanogaster.
    Remnant EJ; Williams A; Lumb C; Yang YT; Chan J; Duchêne S; Daborn PJ; Batterham P; Perry T
    G3 (Bethesda); 2016 Jul; 6(7):2003-12. PubMed ID: 27172217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune response and anti-microbial peptides expression in Malpighian tubules of Drosophila melanogaster is under developmental regulation.
    Verma P; Tapadia MG
    PLoS One; 2012; 7(7):e40714. PubMed ID: 22808242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel tissue in an established model system: the Drosophila pupal midgut.
    Takashima S; Younossi-Hartenstein A; Ortiz PA; Hartenstein V
    Dev Genes Evol; 2011 Jun; 221(2):69-81. PubMed ID: 21556856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti.
    Poupardin R; Riaz MA; Vontas J; David JP; Reynaud S
    Insect Mol Biol; 2010 Apr; 19(2):185-93. PubMed ID: 20041961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and developmental expression of Cyp18, a member of a new cytochrome P450 family from Drosophila.
    Bassett MH; McCarthy JL; Waterman MR; Sliter TJ
    Mol Cell Endocrinol; 1997 Jul; 131(1):39-49. PubMed ID: 9256362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.