BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 25193604)

  • 1. Functional improvement following implantation of a microstructured, type-I collagen scaffold into experimental injuries of the adult rat spinal cord.
    Altinova H; Möllers S; Führmann T; Deumens R; Bozkurt A; Heschel I; Damink LH; Schügner F; Weis J; Brook GA
    Brain Res; 2014 Oct; 1585():37-50. PubMed ID: 25193604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.
    Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D
    J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model.
    Cholas RH; Hsu HP; Spector M
    Biomaterials; 2012 Mar; 33(7):2050-9. PubMed ID: 22182744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using templated agarose scaffolds to promote axon regeneration through sites of spinal cord injury.
    Koffler J; Samara RF; Rosenzweig ES
    Methods Mol Biol; 2014; 1162():157-65. PubMed ID: 24838966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of a Matrigel-loaded agarose scaffold promotes functional regeneration of axons after spinal cord injury in rat.
    Han S; Lee JY; Heo EY; Kwon IK; Yune TY; Youn I
    Biochem Biophys Res Commun; 2018 Feb; 496(3):785-791. PubMed ID: 29395078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats.
    Chen J; Zhang Z; Liu J; Zhou R; Zheng X; Chen T; Wang L; Huang M; Yang C; Li Z; Yang C; Bai X; Jin D
    J Neurosci Res; 2014 Mar; 92(3):307-17. PubMed ID: 24375695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial collagen-filament scaffold promotes axon regeneration and long tract reconstruction in a rat model of spinal cord transection.
    Suzuki H; Kanchiku T; Imajo Y; Yoshida Y; Nishida N; Gondo T; Yoshii S; Taguchi T
    Med Mol Morphol; 2015 Dec; 48(4):214-24. PubMed ID: 25982872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional recovery not correlated with axon regeneration through olfactory ensheathing cell-seeded scaffolds in a model of acute spinal cord injury.
    Altinova H; Möllers S; Deumens R; Gerardo-Nava J; Führmann T; van Neerven SGA; Bozkurt A; Mueller CA; Hoff HJ; Heschel I; Weis J; Brook GA
    Tissue Eng Regen Med; 2016 Oct; 13(5):585-600. PubMed ID: 30603440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine.
    Han S; Xiao Z; Li X; Zhao H; Wang B; Qiu Z; Li Z; Mei X; Xu B; Fan C; Chen B; Han J; Gu Y; Yang H; Shi Q; Dai J
    Sci China Life Sci; 2018 Jan; 61(1):2-13. PubMed ID: 28527111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a Novel Aspect of Tissue Scarring Following Experimental Spinal Cord Injury and the Implantation of Bioengineered Type-I Collagen Scaffolds in the Adult Rat: Involvement of Perineurial-like Cells?
    Altinova H; Achenbach P; Palm M; Katona I; Hermans E; Clusmann H; Weis J; Brook GA
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair.
    Xue H; Zhang XY; Liu JM; Song Y; Li YF; Chen D
    J Biomed Mater Res A; 2013 Jan; 101(1):145-56. PubMed ID: 22829497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation.
    Estrada V; Brazda N; Schmitz C; Heller S; Blazyca H; Martini R; Müller HW
    Neurobiol Dis; 2014 Jul; 67():165-79. PubMed ID: 24713436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord.
    Günther MI; Weidner N; Müller R; Blesch A
    Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine.
    Han S; Wang B; Jin W; Xiao Z; Li X; Ding W; Kapur M; Chen B; Yuan B; Zhu T; Wang H; Wang J; Dong Q; Liang W; Dai J
    Biomaterials; 2015 Feb; 41():89-96. PubMed ID: 25522968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin.
    Hodgetts SI; Simmons PJ; Plant GW
    Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The incorporation of growth factor and chondroitinase ABC into an electrospun scaffold to promote axon regrowth following spinal cord injury.
    Colello RJ; Chow WN; Bigbee JW; Lin C; Dalton D; Brown D; Jha BS; Mathern BE; Lee KD; Simpson DG
    J Tissue Eng Regen Med; 2016 Aug; 10(8):656-68. PubMed ID: 23950083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taxol-modified collagen scaffold implantation promotes functional recovery after long-distance spinal cord complete transection in canines.
    Yin W; Li X; Zhao Y; Tan J; Wu S; Cao Y; Li J; Zhu H; Liu W; Tang G; Meng L; Wang L; Zhu B; Wang G; Zhong M; Liu X; Xie D; Chen B; Ren C; Xiao Z; Jiang X; Dai J
    Biomater Sci; 2018 May; 6(5):1099-1108. PubMed ID: 29528079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds.
    Gros T; Sakamoto JS; Blesch A; Havton LA; Tuszynski MH
    Biomaterials; 2010 Sep; 31(26):6719-29. PubMed ID: 20619785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.