BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 25193604)

  • 21. Chemically extracted acellular muscle: a new potential scaffold for spinal cord injury repair.
    Zhang XY; Xue H; Liu JM; Chen D
    J Biomed Mater Res A; 2012 Mar; 100(3):578-87. PubMed ID: 22213649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody.
    Han Q; Jin W; Xiao Z; Ni H; Wang J; Kong J; Wu J; Liang W; Chen L; Zhao Y; Chen B; Dai J
    Biomaterials; 2010 Dec; 31(35):9212-20. PubMed ID: 20869112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel composite type I collagen scaffold with micropatterned porosity regulates the entrance of phagocytes in a severe model of spinal cord injury.
    Snider S; Cavalli A; Colombo F; Gallotti AL; Quattrini A; Salvatore L; Madaghiele M; Terreni MR; Sannino A; Mortini P
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1040-1053. PubMed ID: 26958814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promotion of neuronal differentiation of neural progenitor cells by using EGFR antibody functionalized collagen scaffolds for spinal cord injury repair.
    Li X; Xiao Z; Han J; Chen L; Xiao H; Ma F; Hou X; Li X; Sun J; Ding W; Zhao Y; Chen B; Dai J
    Biomaterials; 2013 Jul; 34(21):5107-16. PubMed ID: 23591390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats.
    Chen C; Zhao ML; Zhang RK; Lu G; Zhao CY; Fu F; Sun HT; Zhang S; Tu Y; Li XH
    J Biomed Mater Res A; 2017 May; 105(5):1324-1332. PubMed ID: 28120511
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-Cues Laden Scaffold Facilitates Neurovascular Regeneration and Motor Functional Recovery After Complete Spinal Cord Injury.
    Liu D; Shen H; Shen Y; Long G; He X; Zhao Y; Yang Z; Dai J; Li X
    Adv Healthc Mater; 2021 May; 10(10):e2100089. PubMed ID: 33739626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of decellularized spinal scaffolds on spinal axon regeneration in rats.
    Zhu J; Lu Y; Yu F; Zhou L; Shi J; Chen Q; Ding W; Wen X; Ding YQ; Mei J; Wang J
    J Biomed Mater Res A; 2018 Mar; 106(3):698-705. PubMed ID: 28986946
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model.
    Shi Q; Gao W; Han X; Zhu X; Sun J; Xie F; Hou X; Yang H; Dai J; Chen L
    Sci China Life Sci; 2014 Feb; 57(2):232-40. PubMed ID: 24445989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats.
    Li X; Yang Z; Zhang A; Wang T; Chen W
    Biomaterials; 2009 Feb; 30(6):1121-32. PubMed ID: 19042014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalized collagen scaffold implantation and cAMP administration collectively facilitate spinal cord regeneration.
    Li X; Han J; Zhao Y; Ding W; Wei J; Li J; Han S; Shang X; Wang B; Chen B; Xiao Z; Dai J
    Acta Biomater; 2016 Jan; 30():233-245. PubMed ID: 26593786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Promotion of spinal cord axon regeneration by 3D nanofibrous core-sheath scaffolds.
    Zamani F; Amani-Tehran M; Latifi M; Shokrgozar MA; Zaminy A
    J Biomed Mater Res A; 2014 Feb; 102(2):506-13. PubMed ID: 23533050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels.
    Prang P; Müller R; Eljaouhari A; Heckmann K; Kunz W; Weber T; Faber C; Vroemen M; Bogdahn U; Weidner N
    Biomaterials; 2006 Jul; 27(19):3560-9. PubMed ID: 16500703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Multichannel Poly(Propylene Fumarate)-Collagen Scaffold with Collagen-Binding Neurotrophic Factor 3 Promotes Neural Regeneration After Transected Spinal Cord Injury.
    Chen X; Zhao Y; Li X; Xiao Z; Yao Y; Chu Y; Farkas B; Romano I; Brandi F; Dai J
    Adv Healthc Mater; 2018 Jul; 7(14):e1800315. PubMed ID: 29920990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat.
    Hakim JS; Esmaeili Rad M; Grahn PJ; Chen BK; Knight AM; Schmeichel AM; Isaq NA; Dadsetan M; Yaszemski MJ; Windebank AJ
    Tissue Eng Part A; 2015 Jul; 21(13-14):2099-114. PubMed ID: 25891264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair.
    Möllers S; Heschel I; Damink LH; Schügner F; Deumens R; Müller B; Bozkurt A; Nava JG; Noth J; Brook GA
    Tissue Eng Part A; 2009 Mar; 15(3):461-72. PubMed ID: 18724829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multichannel silk protein/laminin grafts for spinal cord injury repair.
    Zhang Q; Yan S; You R; Kaplan DL; Liu Y; Qu J; Li X; Li M; Wang X
    J Biomed Mater Res A; 2016 Dec; 104(12):3045-3057. PubMed ID: 27474892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Olfactory and respiratory lamina propria transplantation after spinal cord transection in rats: effects on functional recovery and axonal regeneration.
    Centenaro LA; Jaeger Mda C; Ilha J; de Souza MA; Kalil-Gaspar PI; Cunha NB; Marcuzzo S; Achaval M
    Brain Res; 2011 Dec; 1426():54-72. PubMed ID: 22041228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.