These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 25193786)
1. Antioxidant response of Phragmites australis to Cu and Cd contamination. Rocha AC; Almeida CM; Basto MC; Vasconcelos MT Ecotoxicol Environ Saf; 2014 Nov; 109():152-60. PubMed ID: 25193786 [TBL] [Abstract][Full Text] [Related]
2. Copper phytoremediation by a salt marsh plant (Phragmites australis) enhanced by autochthonous bioaugmentation. Oliveira T; Mucha AP; Reis I; Rodrigues P; Gomes CR; Almeida CM Mar Pollut Bull; 2014 Nov; 88(1-2):231-8. PubMed ID: 25240741 [TBL] [Abstract][Full Text] [Related]
3. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants? Schröder P; Lyubenova L; Huber C Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Huang X; Wang L; Ma F Chemosphere; 2017 Nov; 187():221-229. PubMed ID: 28850908 [TBL] [Abstract][Full Text] [Related]
5. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Liu Y; Wang X; Zeng G; Qu D; Gu J; Zhou M; Chai L Chemosphere; 2007 Aug; 69(1):99-107. PubMed ID: 17532363 [TBL] [Abstract][Full Text] [Related]
6. Effects of arbuscular mycorrhizal fungi on the growth and toxic element uptake of Phragmites australis (Cav.) Trin. ex Steud under zinc/cadmium stress. You Y; Wang L; Ju C; Wang G; Ma F; Wang Y; Yang D Ecotoxicol Environ Saf; 2021 Apr; 213():112023. PubMed ID: 33578096 [TBL] [Abstract][Full Text] [Related]
7. Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Fernandes JP; Almeida CMR; Andreotti F; Barros L; Almeida T; Mucha AP Sci Total Environ; 2017 Mar; 581-582():801-810. PubMed ID: 28069300 [TBL] [Abstract][Full Text] [Related]
8. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes. Andreotti F; Mucha AP; Caetano C; Rodrigues P; Rocha Gomes C; Almeida CM Ecotoxicol Environ Saf; 2015 Oct; 120():303-9. PubMed ID: 26094036 [TBL] [Abstract][Full Text] [Related]
9. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Lin R; Wang X; Luo Y; Du W; Guo H; Yin D Chemosphere; 2007 Aug; 69(1):89-98. PubMed ID: 17568654 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of heavy metal accumulation and tolerance in oxalic acid-treated Alghanem SMS; Alsudays IM; Farid M; Sarfraz W; Ishaq HK; Farid S; Zubair M; Khalid N; Aslam MA; Abbas M; Abeed AHA Int J Phytoremediation; 2024; 26(12):2048-2063. PubMed ID: 38963119 [TBL] [Abstract][Full Text] [Related]
11. Responses of glutathione and phytochelatins biosysthesis in a cadmium accumulator of Perilla frutescens (L.) Britt. under cadmium contaminated conditions. Xiao Q; Wang Y; Lü Q; Wen H; Han B; Chen S; Zheng X; Lin R Ecotoxicol Environ Saf; 2020 Sep; 201():110805. PubMed ID: 32540618 [TBL] [Abstract][Full Text] [Related]
12. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars (Brassica napus L.) under moderate cadmium stress. Wu Z; Zhao X; Sun X; Tan Q; Tang Y; Nie Z; Qu C; Chen Z; Hu C Chemosphere; 2015 Nov; 138():526-36. PubMed ID: 26207887 [TBL] [Abstract][Full Text] [Related]
13. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
14. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Chen Q; Lu X; Guo X; Pan Y; Yu B; Tang Z; Guo Q Ecotoxicol Environ Saf; 2018 Aug; 157():266-275. PubMed ID: 29626640 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium co-contaminated soils. Hechmi N; Aissa NB; Abdenaceur H; Jedidi N Environ Sci Pollut Res Int; 2014 Jan; 21(2):1304-13. PubMed ID: 23900950 [TBL] [Abstract][Full Text] [Related]
16. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil. Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721 [TBL] [Abstract][Full Text] [Related]
17. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. Guo H; Chen H; Hong C; Jiang D; Zheng B Ecotoxicol Environ Saf; 2017 Jul; 141():119-128. PubMed ID: 28324818 [TBL] [Abstract][Full Text] [Related]
18. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650 [TBL] [Abstract][Full Text] [Related]
19. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Bankaji I; Caçador I; Sleimi N Environ Sci Pollut Res Int; 2015 Sep; 22(17):13058-69. PubMed ID: 25925143 [TBL] [Abstract][Full Text] [Related]
20. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Rivelli AR; De Maria S; Puschenreiter M; Gherbin P Int J Phytoremediation; 2012 Apr; 14(4):320-34. PubMed ID: 22567714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]