These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25194041)
1. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats. Jendzjowsky NG; Just TP; DeLorey DS J Physiol; 2014 Nov; 592(21):4789-802. PubMed ID: 25194041 [TBL] [Abstract][Full Text] [Related]
2. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. Jendzjowsky NG; DeLorey DS J Appl Physiol (1985); 2013 Jul; 115(1):97-106. PubMed ID: 23640592 [TBL] [Abstract][Full Text] [Related]
3. Exercise training and α1-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle. Just TP; DeLorey DS Physiol Rep; 2016 Feb; 4(3):. PubMed ID: 26869686 [TBL] [Abstract][Full Text] [Related]
4. Hindlimb unweighting does not alter vasoconstrictor responsiveness and nitric oxide-mediated inhibition of sympathetic vasoconstriction. Just TP; Jendzjowsky NG; DeLorey DS J Physiol; 2015 May; 593(9):2213-24. PubMed ID: 25752721 [TBL] [Abstract][Full Text] [Related]
5. Short-term exercise training augments 2-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle. Jendzjowsky NG; DeLorey DS J Physiol; 2013 Oct; 591(20):5221-33. PubMed ID: 23940382 [TBL] [Abstract][Full Text] [Related]
6. Effects of sex and exercise training on β-adrenoreceptor-mediated opposition of evoked sympathetic vasoconstriction in resting and contracting muscle of rats. Cooper IR; Liu S; DeLorey DS J Appl Physiol (1985); 2021 Jan; 130(1):114-123. PubMed ID: 33090912 [TBL] [Abstract][Full Text] [Related]
7. Sex differences in sympathetic vasoconstrictor responsiveness and sympatholysis. Just TP; DeLorey DS J Appl Physiol (1985); 2017 Jul; 123(1):128-135. PubMed ID: 28473610 [TBL] [Abstract][Full Text] [Related]
9. Short-term exercise training enhances functional sympatholysis through a nitric oxide-dependent mechanism. Jendzjowsky NG; Delorey DS J Physiol; 2013 Mar; 591(6):1535-49. PubMed ID: 23297301 [TBL] [Abstract][Full Text] [Related]
10. Short-term exercise training augments sympathetic vasoconstrictor responsiveness and endothelium-dependent vasodilation in resting skeletal muscle. Jendzjowsky NG; DeLorey DS Am J Physiol Regul Integr Comp Physiol; 2012 Aug; 303(3):R332-9. PubMed ID: 22696575 [TBL] [Abstract][Full Text] [Related]
11. Effects of neuronal nitric oxide synthase inhibition on resting and exercising hindlimb muscle blood flow in the rat. Copp SW; Hirai DM; Schwagerl PJ; Musch TI; Poole DC J Physiol; 2010 Apr; 588(Pt 8):1321-31. PubMed ID: 20176629 [TBL] [Abstract][Full Text] [Related]
12. Acute tetrahydrobiopterin supplementation attenuates sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle of healthy rats. Jendzjowsky NG; Just TP; Jones KE; DeLorey DS Physiol Rep; 2014 Oct; 2(10):. PubMed ID: 25318748 [TBL] [Abstract][Full Text] [Related]
13. Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure. Hirai DM; Copp SW; Ferguson SK; Holdsworth CT; Hageman KS; Poole DC; Musch TI Nitric Oxide; 2018 Apr; 74():1-9. PubMed ID: 29288804 [TBL] [Abstract][Full Text] [Related]
14. β-Adrenoreceptors do not oppose sympathetic vasoconstriction in resting and contracting skeletal muscle of male rats. Cooper IR; Just TP; DeLorey DS Appl Physiol Nutr Metab; 2019 Nov; 44(11):1230-1236. PubMed ID: 30951638 [TBL] [Abstract][Full Text] [Related]
15. Impaired vasomodulation is associated with reduced neuronal nitric oxide synthase in skeletal muscle of ovariectomized rats. Fadel PJ; Zhao W; Thomas GD J Physiol; 2003 May; 549(Pt 1):243-53. PubMed ID: 12665606 [TBL] [Abstract][Full Text] [Related]
16. Effects of chronic heart failure on neuronal nitric oxide synthase-mediated control of microvascular O2 pressure in contracting rat skeletal muscle. Copp SW; Hirai DM; Ferguson SK; Holdsworth CT; Musch TI; Poole DC J Physiol; 2012 Aug; 590(15):3585-96. PubMed ID: 22687613 [TBL] [Abstract][Full Text] [Related]
17. Sympathetic activation increases NO release from eNOS but neither eNOS nor nNOS play an essential role in exercise hyperemia in the human forearm. Shabeeh H; Seddon M; Brett S; Melikian N; Casadei B; Shah AM; Chowienczyk P Am J Physiol Heart Circ Physiol; 2013 May; 304(9):H1225-30. PubMed ID: 23436331 [TBL] [Abstract][Full Text] [Related]
18. Exercise training improves functional sympatholysis in spontaneously hypertensive rats through a nitric oxide-dependent mechanism. Mizuno M; Iwamoto GA; Vongpatanasin W; Mitchell JH; Smith SA Am J Physiol Heart Circ Physiol; 2014 Jul; 307(2):H242-51. PubMed ID: 24816260 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. Thomas GD; Victor RG J Physiol; 1998 Feb; 506 ( Pt 3)(Pt 3):817-26. PubMed ID: 9503340 [TBL] [Abstract][Full Text] [Related]
20. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function. Hirai DM; Copp SW; Holdsworth CT; Ferguson SK; McCullough DJ; Behnke BJ; Musch TI; Poole DC Am J Physiol Heart Circ Physiol; 2014 Mar; 306(5):H690-8. PubMed ID: 24414070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]